FFmpeg  4.4.6
tx_template.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2019 Lynne <dev@lynne.ee>
3  * Power of two FFT:
4  * Copyright (c) 2008 Loren Merritt
5  * Copyright (c) 2002 Fabrice Bellard
6  * Partly based on libdjbfft by D. J. Bernstein
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 /* All costabs for a type are defined here */
29 COSTABLE(128);
30 COSTABLE(256);
31 COSTABLE(512);
32 COSTABLE(1024);
33 COSTABLE(2048);
34 COSTABLE(4096);
35 COSTABLE(8192);
36 COSTABLE(16384);
37 COSTABLE(32768);
38 COSTABLE(65536);
39 COSTABLE(131072);
40 DECLARE_ALIGNED(32, FFTComplex, TX_NAME(ff_cos_53))[4];
41 
42 static FFTSample * const cos_tabs[18] = {
43  NULL,
44  NULL,
45  NULL,
46  NULL,
47  TX_NAME(ff_cos_16),
48  TX_NAME(ff_cos_32),
49  TX_NAME(ff_cos_64),
50  TX_NAME(ff_cos_128),
51  TX_NAME(ff_cos_256),
52  TX_NAME(ff_cos_512),
53  TX_NAME(ff_cos_1024),
54  TX_NAME(ff_cos_2048),
55  TX_NAME(ff_cos_4096),
56  TX_NAME(ff_cos_8192),
57  TX_NAME(ff_cos_16384),
58  TX_NAME(ff_cos_32768),
59  TX_NAME(ff_cos_65536),
60  TX_NAME(ff_cos_131072),
61 };
62 
64 {
65  int m = 1 << index;
66  double freq = 2*M_PI/m;
68  for(int i = 0; i <= m/4; i++)
69  tab[i] = RESCALE(cos(i*freq));
70  for(int i = 1; i < m/4; i++)
71  tab[m/2 - i] = tab[i];
72 }
73 
74 #define INIT_FF_COS_TABS_FUNC(index, size) \
75 static av_cold void init_cos_tabs_ ## size (void) \
76 { \
77  init_cos_tabs_idx(index); \
78 }
79 
86 INIT_FF_COS_TABS_FUNC(10, 1024)
87 INIT_FF_COS_TABS_FUNC(11, 2048)
88 INIT_FF_COS_TABS_FUNC(12, 4096)
89 INIT_FF_COS_TABS_FUNC(13, 8192)
90 INIT_FF_COS_TABS_FUNC(14, 16384)
91 INIT_FF_COS_TABS_FUNC(15, 32768)
92 INIT_FF_COS_TABS_FUNC(16, 65536)
93 INIT_FF_COS_TABS_FUNC(17, 131072)
94 
95 static av_cold void ff_init_53_tabs(void)
96 {
97  TX_NAME(ff_cos_53)[0] = (FFTComplex){ RESCALE(cos(2 * M_PI / 12)), RESCALE(cos(2 * M_PI / 12)) };
98  TX_NAME(ff_cos_53)[1] = (FFTComplex){ RESCALE(cos(2 * M_PI / 6)), RESCALE(cos(2 * M_PI / 6)) };
99  TX_NAME(ff_cos_53)[2] = (FFTComplex){ RESCALE(cos(2 * M_PI / 5)), RESCALE(sin(2 * M_PI / 5)) };
100  TX_NAME(ff_cos_53)[3] = (FFTComplex){ RESCALE(cos(2 * M_PI / 10)), RESCALE(sin(2 * M_PI / 10)) };
101 }
102 
105  { NULL },
106  { NULL },
107  { NULL },
108  { init_cos_tabs_16, AV_ONCE_INIT },
109  { init_cos_tabs_32, AV_ONCE_INIT },
110  { init_cos_tabs_64, AV_ONCE_INIT },
111  { init_cos_tabs_128, AV_ONCE_INIT },
112  { init_cos_tabs_256, AV_ONCE_INIT },
113  { init_cos_tabs_512, AV_ONCE_INIT },
114  { init_cos_tabs_1024, AV_ONCE_INIT },
115  { init_cos_tabs_2048, AV_ONCE_INIT },
116  { init_cos_tabs_4096, AV_ONCE_INIT },
117  { init_cos_tabs_8192, AV_ONCE_INIT },
118  { init_cos_tabs_16384, AV_ONCE_INIT },
119  { init_cos_tabs_32768, AV_ONCE_INIT },
120  { init_cos_tabs_65536, AV_ONCE_INIT },
121  { init_cos_tabs_131072, AV_ONCE_INIT },
122 };
123 
124 static av_cold void init_cos_tabs(int index)
125 {
128 }
129 
131  ptrdiff_t stride)
132 {
133  FFTComplex tmp[2];
134 #ifdef TX_INT32
135  int64_t mtmp[4];
136 #endif
137 
138  BF(tmp[0].re, tmp[1].im, in[1].im, in[2].im);
139  BF(tmp[0].im, tmp[1].re, in[1].re, in[2].re);
140 
141  out[0*stride].re = in[0].re + tmp[1].re;
142  out[0*stride].im = in[0].im + tmp[1].im;
143 
144 #ifdef TX_INT32
145  mtmp[0] = (int64_t)TX_NAME(ff_cos_53)[0].re * tmp[0].re;
146  mtmp[1] = (int64_t)TX_NAME(ff_cos_53)[0].im * tmp[0].im;
147  mtmp[2] = (int64_t)TX_NAME(ff_cos_53)[1].re * tmp[1].re;
148  mtmp[3] = (int64_t)TX_NAME(ff_cos_53)[1].re * tmp[1].im;
149  out[1*stride].re = in[0].re - (mtmp[2] + mtmp[0] + 0x40000000 >> 31);
150  out[1*stride].im = in[0].im - (mtmp[3] - mtmp[1] + 0x40000000 >> 31);
151  out[2*stride].re = in[0].re - (mtmp[2] - mtmp[0] + 0x40000000 >> 31);
152  out[2*stride].im = in[0].im - (mtmp[3] + mtmp[1] + 0x40000000 >> 31);
153 #else
154  tmp[0].re = TX_NAME(ff_cos_53)[0].re * tmp[0].re;
155  tmp[0].im = TX_NAME(ff_cos_53)[0].im * tmp[0].im;
156  tmp[1].re = TX_NAME(ff_cos_53)[1].re * tmp[1].re;
157  tmp[1].im = TX_NAME(ff_cos_53)[1].re * tmp[1].im;
158  out[1*stride].re = in[0].re - tmp[1].re + tmp[0].re;
159  out[1*stride].im = in[0].im - tmp[1].im - tmp[0].im;
160  out[2*stride].re = in[0].re - tmp[1].re - tmp[0].re;
161  out[2*stride].im = in[0].im - tmp[1].im + tmp[0].im;
162 #endif
163 }
164 
165 #define DECL_FFT5(NAME, D0, D1, D2, D3, D4) \
166 static av_always_inline void NAME(FFTComplex *out, FFTComplex *in, \
167  ptrdiff_t stride) \
168 { \
169  FFTComplex z0[4], t[6]; \
170  \
171  BF(t[1].im, t[0].re, in[1].re, in[4].re); \
172  BF(t[1].re, t[0].im, in[1].im, in[4].im); \
173  BF(t[3].im, t[2].re, in[2].re, in[3].re); \
174  BF(t[3].re, t[2].im, in[2].im, in[3].im); \
175  \
176  out[D0*stride].re = in[0].re + t[0].re + t[2].re; \
177  out[D0*stride].im = in[0].im + t[0].im + t[2].im; \
178  \
179  SMUL(t[4].re, t[0].re, TX_NAME(ff_cos_53)[2].re, TX_NAME(ff_cos_53)[3].re, t[2].re, t[0].re); \
180  SMUL(t[4].im, t[0].im, TX_NAME(ff_cos_53)[2].re, TX_NAME(ff_cos_53)[3].re, t[2].im, t[0].im); \
181  CMUL(t[5].re, t[1].re, TX_NAME(ff_cos_53)[2].im, TX_NAME(ff_cos_53)[3].im, t[3].re, t[1].re); \
182  CMUL(t[5].im, t[1].im, TX_NAME(ff_cos_53)[2].im, TX_NAME(ff_cos_53)[3].im, t[3].im, t[1].im); \
183  \
184  BF(z0[0].re, z0[3].re, t[0].re, t[1].re); \
185  BF(z0[0].im, z0[3].im, t[0].im, t[1].im); \
186  BF(z0[2].re, z0[1].re, t[4].re, t[5].re); \
187  BF(z0[2].im, z0[1].im, t[4].im, t[5].im); \
188  \
189  out[D1*stride].re = in[0].re + z0[3].re; \
190  out[D1*stride].im = in[0].im + z0[0].im; \
191  out[D2*stride].re = in[0].re + z0[2].re; \
192  out[D2*stride].im = in[0].im + z0[1].im; \
193  out[D3*stride].re = in[0].re + z0[1].re; \
194  out[D3*stride].im = in[0].im + z0[2].im; \
195  out[D4*stride].re = in[0].re + z0[0].re; \
196  out[D4*stride].im = in[0].im + z0[3].im; \
197 }
198 
199 DECL_FFT5(fft5, 0, 1, 2, 3, 4)
200 DECL_FFT5(fft5_m1, 0, 6, 12, 3, 9)
201 DECL_FFT5(fft5_m2, 10, 1, 7, 13, 4)
202 DECL_FFT5(fft5_m3, 5, 11, 2, 8, 14)
203 
205  ptrdiff_t stride)
206 {
207  FFTComplex tmp[15];
208 
209  for (int i = 0; i < 5; i++)
210  fft3(tmp + i, in + i*3, 5);
211 
212  fft5_m1(out, tmp + 0, stride);
213  fft5_m2(out, tmp + 5, stride);
214  fft5_m3(out, tmp + 10, stride);
215 }
216 
217 #define BUTTERFLIES(a0,a1,a2,a3) {\
218  BF(t3, t5, t5, t1);\
219  BF(a2.re, a0.re, a0.re, t5);\
220  BF(a3.im, a1.im, a1.im, t3);\
221  BF(t4, t6, t2, t6);\
222  BF(a3.re, a1.re, a1.re, t4);\
223  BF(a2.im, a0.im, a0.im, t6);\
224 }
225 
226 // force loading all the inputs before storing any.
227 // this is slightly slower for small data, but avoids store->load aliasing
228 // for addresses separated by large powers of 2.
229 #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
230  FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
231  BF(t3, t5, t5, t1);\
232  BF(a2.re, a0.re, r0, t5);\
233  BF(a3.im, a1.im, i1, t3);\
234  BF(t4, t6, t2, t6);\
235  BF(a3.re, a1.re, r1, t4);\
236  BF(a2.im, a0.im, i0, t6);\
237 }
238 
239 #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
240  CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
241  CMUL(t5, t6, a3.re, a3.im, wre, wim);\
242  BUTTERFLIES(a0,a1,a2,a3)\
243 }
244 
245 #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
246  t1 = a2.re;\
247  t2 = a2.im;\
248  t5 = a3.re;\
249  t6 = a3.im;\
250  BUTTERFLIES(a0,a1,a2,a3)\
251 }
252 
253 /* z[0...8n-1], w[1...2n-1] */
254 #define PASS(name)\
255 static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
256 {\
257  FFTSample t1, t2, t3, t4, t5, t6;\
258  int o1 = 2*n;\
259  int o2 = 4*n;\
260  int o3 = 6*n;\
261  const FFTSample *wim = wre+o1;\
262  n--;\
263 \
264  TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
265  TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
266  do {\
267  z += 2;\
268  wre += 2;\
269  wim -= 2;\
270  TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
271  TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
272  } while(--n);\
273 }
274 
275 PASS(pass)
276 #undef BUTTERFLIES
277 #define BUTTERFLIES BUTTERFLIES_BIG
278 PASS(pass_big)
279 
280 #define DECL_FFT(n,n2,n4)\
281 static void fft##n(FFTComplex *z)\
282 {\
283  fft##n2(z);\
284  fft##n4(z+n4*2);\
285  fft##n4(z+n4*3);\
286  pass(z,TX_NAME(ff_cos_##n),n4/2);\
287 }
288 
289 static void fft2(FFTComplex *z)
290 {
291  FFTComplex tmp;
292  BF(tmp.re, z[0].re, z[0].re, z[1].re);
293  BF(tmp.im, z[0].im, z[0].im, z[1].im);
294  z[1] = tmp;
295 }
296 
297 static void fft4(FFTComplex *z)
298 {
299  FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
300 
301  BF(t3, t1, z[0].re, z[1].re);
302  BF(t8, t6, z[3].re, z[2].re);
303  BF(z[2].re, z[0].re, t1, t6);
304  BF(t4, t2, z[0].im, z[1].im);
305  BF(t7, t5, z[2].im, z[3].im);
306  BF(z[3].im, z[1].im, t4, t8);
307  BF(z[3].re, z[1].re, t3, t7);
308  BF(z[2].im, z[0].im, t2, t5);
309 }
310 
311 static void fft8(FFTComplex *z)
312 {
313  FFTSample t1, t2, t3, t4, t5, t6;
314 
315  fft4(z);
316 
317  BF(t1, z[5].re, z[4].re, -z[5].re);
318  BF(t2, z[5].im, z[4].im, -z[5].im);
319  BF(t5, z[7].re, z[6].re, -z[7].re);
320  BF(t6, z[7].im, z[6].im, -z[7].im);
321 
322  BUTTERFLIES(z[0],z[2],z[4],z[6]);
323  TRANSFORM(z[1],z[3],z[5],z[7],RESCALE(M_SQRT1_2),RESCALE(M_SQRT1_2));
324 }
325 
326 static void fft16(FFTComplex *z)
327 {
328  FFTSample t1, t2, t3, t4, t5, t6;
329  FFTSample cos_16_1 = TX_NAME(ff_cos_16)[1];
330  FFTSample cos_16_3 = TX_NAME(ff_cos_16)[3];
331 
332  fft8(z);
333  fft4(z+8);
334  fft4(z+12);
335 
336  TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
337  TRANSFORM(z[2],z[6],z[10],z[14],RESCALE(M_SQRT1_2),RESCALE(M_SQRT1_2));
338  TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
339  TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
340 }
341 
342 DECL_FFT(32,16,8)
343 DECL_FFT(64,32,16)
344 DECL_FFT(128,64,32)
345 DECL_FFT(256,128,64)
346 DECL_FFT(512,256,128)
347 #define pass pass_big
348 DECL_FFT(1024,512,256)
349 DECL_FFT(2048,1024,512)
350 DECL_FFT(4096,2048,1024)
351 DECL_FFT(8192,4096,2048)
352 DECL_FFT(16384,8192,4096)
353 DECL_FFT(32768,16384,8192)
354 DECL_FFT(65536,32768,16384)
355 DECL_FFT(131072,65536,32768)
356 
357 static void (* const fft_dispatch[])(FFTComplex*) = {
358  NULL, fft2, fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512,
359  fft1024, fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072
360 };
361 
362 #define DECL_COMP_FFT(N) \
363 static void compound_fft_##N##xM(AVTXContext *s, void *_out, \
364  void *_in, ptrdiff_t stride) \
365 { \
366  const int m = s->m, *in_map = s->pfatab, *out_map = in_map + N*m; \
367  FFTComplex *in = _in; \
368  FFTComplex *out = _out; \
369  FFTComplex fft##N##in[N]; \
370  void (*fftp)(FFTComplex *z) = fft_dispatch[av_log2(m)]; \
371  \
372  for (int i = 0; i < m; i++) { \
373  for (int j = 0; j < N; j++) \
374  fft##N##in[j] = in[in_map[i*N + j]]; \
375  fft##N(s->tmp + s->revtab[i], fft##N##in, m); \
376  } \
377  \
378  for (int i = 0; i < N; i++) \
379  fftp(s->tmp + m*i); \
380  \
381  for (int i = 0; i < N*m; i++) \
382  out[i] = s->tmp[out_map[i]]; \
383 }
384 
385 DECL_COMP_FFT(3)
386 DECL_COMP_FFT(5)
387 DECL_COMP_FFT(15)
388 
389 static void monolithic_fft(AVTXContext *s, void *_out, void *_in,
390  ptrdiff_t stride)
391 {
392  FFTComplex *in = _in;
393  FFTComplex *out = _out;
394  int m = s->m, mb = av_log2(m);
395 
396  if (s->flags & AV_TX_INPLACE) {
397  FFTComplex tmp;
398  int src, dst, *inplace_idx = s->inplace_idx;
399 
400  src = *inplace_idx++;
401 
402  do {
403  tmp = out[src];
404  dst = s->revtab[src];
405  do {
406  FFSWAP(FFTComplex, tmp, out[dst]);
407  dst = s->revtab[dst];
408  } while (dst != src); /* Can be > as well, but is less predictable */
409  out[dst] = tmp;
410  } while ((src = *inplace_idx++));
411  } else {
412  for (int i = 0; i < m; i++)
413  out[i] = in[s->revtab[i]];
414  }
415 
416  fft_dispatch[mb](out);
417 }
418 
419 static void naive_fft(AVTXContext *s, void *_out, void *_in,
420  ptrdiff_t stride)
421 {
422  FFTComplex *in = _in;
423  FFTComplex *out = _out;
424  const int n = s->n;
425  double phase = s->inv ? 2.0*M_PI/n : -2.0*M_PI/n;
426 
427  for(int i = 0; i < n; i++) {
428  FFTComplex tmp = { 0 };
429  for(int j = 0; j < n; j++) {
430  const double factor = phase*i*j;
431  const FFTComplex mult = {
432  RESCALE(cos(factor)),
433  RESCALE(sin(factor)),
434  };
435  FFTComplex res;
436  CMUL3(res, in[j], mult);
437  tmp.re += res.re;
438  tmp.im += res.im;
439  }
440  out[i] = tmp;
441  }
442 }
443 
444 #define DECL_COMP_IMDCT(N) \
445 static void compound_imdct_##N##xM(AVTXContext *s, void *_dst, void *_src, \
446  ptrdiff_t stride) \
447 { \
448  FFTComplex fft##N##in[N]; \
449  FFTComplex *z = _dst, *exp = s->exptab; \
450  const int m = s->m, len8 = N*m >> 1; \
451  const int *in_map = s->pfatab, *out_map = in_map + N*m; \
452  const FFTSample *src = _src, *in1, *in2; \
453  void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; \
454  \
455  stride /= sizeof(*src); /* To convert it from bytes */ \
456  in1 = src; \
457  in2 = src + ((N*m*2) - 1) * stride; \
458  \
459  for (int i = 0; i < m; i++) { \
460  for (int j = 0; j < N; j++) { \
461  const int k = in_map[i*N + j]; \
462  FFTComplex tmp = { in2[-k*stride], in1[k*stride] }; \
463  CMUL3(fft##N##in[j], tmp, exp[k >> 1]); \
464  } \
465  fft##N(s->tmp + s->revtab[i], fft##N##in, m); \
466  } \
467  \
468  for (int i = 0; i < N; i++) \
469  fftp(s->tmp + m*i); \
470  \
471  for (int i = 0; i < len8; i++) { \
472  const int i0 = len8 + i, i1 = len8 - i - 1; \
473  const int s0 = out_map[i0], s1 = out_map[i1]; \
474  FFTComplex src1 = { s->tmp[s1].im, s->tmp[s1].re }; \
475  FFTComplex src0 = { s->tmp[s0].im, s->tmp[s0].re }; \
476  \
477  CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); \
478  CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); \
479  } \
480 }
481 
484 DECL_COMP_IMDCT(15)
485 
486 #define DECL_COMP_MDCT(N) \
487 static void compound_mdct_##N##xM(AVTXContext *s, void *_dst, void *_src, \
488  ptrdiff_t stride) \
489 { \
490  FFTSample *src = _src, *dst = _dst; \
491  FFTComplex *exp = s->exptab, tmp, fft##N##in[N]; \
492  const int m = s->m, len4 = N*m, len3 = len4 * 3, len8 = len4 >> 1; \
493  const int *in_map = s->pfatab, *out_map = in_map + N*m; \
494  void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; \
495  \
496  stride /= sizeof(*dst); \
497  \
498  for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */ \
499  for (int j = 0; j < N; j++) { \
500  const int k = in_map[i*N + j]; \
501  if (k < len4) { \
502  tmp.re = FOLD(-src[ len4 + k], src[1*len4 - 1 - k]); \
503  tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]); \
504  } else { \
505  tmp.re = FOLD(-src[ len4 + k], -src[5*len4 - 1 - k]); \
506  tmp.im = FOLD( src[-len4 + k], -src[1*len3 - 1 - k]); \
507  } \
508  CMUL(fft##N##in[j].im, fft##N##in[j].re, tmp.re, tmp.im, \
509  exp[k >> 1].re, exp[k >> 1].im); \
510  } \
511  fft##N(s->tmp + s->revtab[i], fft##N##in, m); \
512  } \
513  \
514  for (int i = 0; i < N; i++) \
515  fftp(s->tmp + m*i); \
516  \
517  for (int i = 0; i < len8; i++) { \
518  const int i0 = len8 + i, i1 = len8 - i - 1; \
519  const int s0 = out_map[i0], s1 = out_map[i1]; \
520  FFTComplex src1 = { s->tmp[s1].re, s->tmp[s1].im }; \
521  FFTComplex src0 = { s->tmp[s0].re, s->tmp[s0].im }; \
522  \
523  CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, \
524  exp[i0].im, exp[i0].re); \
525  CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, \
526  exp[i1].im, exp[i1].re); \
527  } \
528 }
529 
532 DECL_COMP_MDCT(15)
533 
534 static void monolithic_imdct(AVTXContext *s, void *_dst, void *_src,
535  ptrdiff_t stride)
536 {
537  FFTComplex *z = _dst, *exp = s->exptab;
538  const int m = s->m, len8 = m >> 1;
539  const FFTSample *src = _src, *in1, *in2;
540  void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)];
541 
542  stride /= sizeof(*src);
543  in1 = src;
544  in2 = src + ((m*2) - 1) * stride;
545 
546  for (int i = 0; i < m; i++) {
547  FFTComplex tmp = { in2[-2*i*stride], in1[2*i*stride] };
548  CMUL3(z[s->revtab[i]], tmp, exp[i]);
549  }
550 
551  fftp(z);
552 
553  for (int i = 0; i < len8; i++) {
554  const int i0 = len8 + i, i1 = len8 - i - 1;
555  FFTComplex src1 = { z[i1].im, z[i1].re };
556  FFTComplex src0 = { z[i0].im, z[i0].re };
557 
558  CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re);
559  CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re);
560  }
561 }
562 
563 static void monolithic_mdct(AVTXContext *s, void *_dst, void *_src,
564  ptrdiff_t stride)
565 {
566  FFTSample *src = _src, *dst = _dst;
567  FFTComplex *exp = s->exptab, tmp, *z = _dst;
568  const int m = s->m, len4 = m, len3 = len4 * 3, len8 = len4 >> 1;
569  void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)];
570 
571  stride /= sizeof(*dst);
572 
573  for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */
574  const int k = 2*i;
575  if (k < len4) {
576  tmp.re = FOLD(-src[ len4 + k], src[1*len4 - 1 - k]);
577  tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]);
578  } else {
579  tmp.re = FOLD(-src[ len4 + k], -src[5*len4 - 1 - k]);
580  tmp.im = FOLD( src[-len4 + k], -src[1*len3 - 1 - k]);
581  }
582  CMUL(z[s->revtab[i]].im, z[s->revtab[i]].re, tmp.re, tmp.im,
583  exp[i].re, exp[i].im);
584  }
585 
586  fftp(z);
587 
588  for (int i = 0; i < len8; i++) {
589  const int i0 = len8 + i, i1 = len8 - i - 1;
590  FFTComplex src1 = { z[i1].re, z[i1].im };
591  FFTComplex src0 = { z[i0].re, z[i0].im };
592 
593  CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im,
594  exp[i0].im, exp[i0].re);
595  CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im,
596  exp[i1].im, exp[i1].re);
597  }
598 }
599 
600 static void naive_imdct(AVTXContext *s, void *_dst, void *_src,
601  ptrdiff_t stride)
602 {
603  int len = s->n;
604  int len2 = len*2;
605  FFTSample *src = _src;
606  FFTSample *dst = _dst;
607  double scale = s->scale;
608  const double phase = M_PI/(4.0*len2);
609 
610  stride /= sizeof(*src);
611 
612  for (int i = 0; i < len; i++) {
613  double sum_d = 0.0;
614  double sum_u = 0.0;
615  double i_d = phase * (4*len - 2*i - 1);
616  double i_u = phase * (3*len2 + 2*i + 1);
617  for (int j = 0; j < len2; j++) {
618  double a = (2 * j + 1);
619  double a_d = cos(a * i_d);
620  double a_u = cos(a * i_u);
621  double val = UNSCALE(src[j*stride]);
622  sum_d += a_d * val;
623  sum_u += a_u * val;
624  }
625  dst[i + 0] = RESCALE( sum_d*scale);
626  dst[i + len] = RESCALE(-sum_u*scale);
627  }
628 }
629 
630 static void naive_mdct(AVTXContext *s, void *_dst, void *_src,
631  ptrdiff_t stride)
632 {
633  int len = s->n*2;
634  FFTSample *src = _src;
635  FFTSample *dst = _dst;
636  double scale = s->scale;
637  const double phase = M_PI/(4.0*len);
638 
639  stride /= sizeof(*dst);
640 
641  for (int i = 0; i < len; i++) {
642  double sum = 0.0;
643  for (int j = 0; j < len*2; j++) {
644  int a = (2*j + 1 + len) * (2*i + 1);
645  sum += UNSCALE(src[j]) * cos(a * phase);
646  }
647  dst[i*stride] = RESCALE(sum*scale);
648  }
649 }
650 
651 static int gen_mdct_exptab(AVTXContext *s, int len4, double scale)
652 {
653  const double theta = (scale < 0 ? len4 : 0) + 1.0/8.0;
654 
655  if (!(s->exptab = av_malloc_array(len4, sizeof(*s->exptab))))
656  return AVERROR(ENOMEM);
657 
658  scale = sqrt(fabs(scale));
659  for (int i = 0; i < len4; i++) {
660  const double alpha = M_PI_2 * (i + theta) / len4;
661  s->exptab[i].re = RESCALE(cos(alpha) * scale);
662  s->exptab[i].im = RESCALE(sin(alpha) * scale);
663  }
664 
665  return 0;
666 }
667 
669  enum AVTXType type, int inv, int len,
670  const void *scale, uint64_t flags)
671 {
672  const int is_mdct = ff_tx_type_is_mdct(type);
673  int err, l, n = 1, m = 1, max_ptwo = 1 << (FF_ARRAY_ELEMS(fft_dispatch) - 1);
674 
675  if (is_mdct)
676  len >>= 1;
677 
678  l = len;
679 
680 #define CHECK_FACTOR(DST, FACTOR, SRC) \
681  if (DST == 1 && !(SRC % FACTOR)) { \
682  DST = FACTOR; \
683  SRC /= FACTOR; \
684  }
685  CHECK_FACTOR(n, 15, len)
686  CHECK_FACTOR(n, 5, len)
687  CHECK_FACTOR(n, 3, len)
688 #undef CHECK_FACTOR
689 
690  /* len must be a power of two now */
691  if (!(len & (len - 1)) && len >= 2 && len <= max_ptwo) {
692  m = len;
693  len = 1;
694  }
695 
696  s->n = n;
697  s->m = m;
698  s->inv = inv;
699  s->type = type;
700  s->flags = flags;
701 
702  /* If we weren't able to split the length into factors we can handle,
703  * resort to using the naive and slow FT. This also filters out
704  * direct 3, 5 and 15 transforms as they're too niche. */
705  if (len > 1 || m == 1) {
706  if (is_mdct && (l & 1)) /* Odd (i)MDCTs are not supported yet */
707  return AVERROR(ENOSYS);
708  if (flags & AV_TX_INPLACE) /* Neither are in-place naive transforms */
709  return AVERROR(ENOSYS);
710  s->n = l;
711  s->m = 1;
712  *tx = naive_fft;
713  if (is_mdct) {
714  s->scale = *((SCALE_TYPE *)scale);
715  *tx = inv ? naive_imdct : naive_mdct;
716  }
717  return 0;
718  }
719 
720  if (n > 1 && m > 1) { /* 2D transform case */
721  if ((err = ff_tx_gen_compound_mapping(s)))
722  return err;
723  if (!(s->tmp = av_malloc(n*m*sizeof(*s->tmp))))
724  return AVERROR(ENOMEM);
725  *tx = n == 3 ? compound_fft_3xM :
726  n == 5 ? compound_fft_5xM :
727  compound_fft_15xM;
728  if (is_mdct)
729  *tx = n == 3 ? inv ? compound_imdct_3xM : compound_mdct_3xM :
730  n == 5 ? inv ? compound_imdct_5xM : compound_mdct_5xM :
731  inv ? compound_imdct_15xM : compound_mdct_15xM;
732  } else { /* Direct transform case */
733  *tx = monolithic_fft;
734  if (is_mdct)
735  *tx = inv ? monolithic_imdct : monolithic_mdct;
736  }
737 
738  if (n != 1)
739  init_cos_tabs(0);
740  if (m != 1) {
741  if ((err = ff_tx_gen_ptwo_revtab(s, n == 1 && !is_mdct && !(flags & AV_TX_INPLACE))))
742  return err;
743  if (flags & AV_TX_INPLACE) {
744  if (is_mdct) /* In-place MDCTs are not supported yet */
745  return AVERROR(ENOSYS);
747  return err;
748  }
749  for (int i = 4; i <= av_log2(m); i++)
750  init_cos_tabs(i);
751  }
752 
753  if (is_mdct)
754  return gen_mdct_exptab(s, n*m, *((SCALE_TYPE *)scale));
755 
756  return 0;
757 }
static double val(void *priv, double ch)
Definition: aeval.c:76
#define av_always_inline
Definition: attributes.h:45
#define av_cold
Definition: attributes.h:88
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
#define flags(name, subs,...)
Definition: cbs_av1.c:572
#define s(width, name)
Definition: cbs_vp9.c:257
#define FFSWAP(type, a, b)
Definition: common.h:108
#define NULL
Definition: coverity.c:32
long long int64_t
Definition: coverity.c:34
static __device__ float fabs(float a)
Definition: cuda_runtime.h:182
static void sum_d(const int *input, int *output, int len)
Definition: dcadct.c:51
#define BF(a, b, c, s)
int8_t exp
Definition: eval.c:72
float im
Definition: fft.c:82
float re
Definition: fft.c:82
float FFTSample
Definition: avfft.h:35
#define AVERROR(e)
Definition: error.h:43
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:117
int index
Definition: gxfenc.c:89
cl_device_type type
static const int16_t alpha[]
Definition: ilbcdata.h:55
int i
Definition: input.c:407
#define av_log2
Definition: intmath.h:83
static int16_t mult(Float11 *f1, Float11 *f2)
Definition: g726.c:55
int(* func)(AVBPrint *dst, const char *in, const char *arg)
Definition: jacosubdec.c:67
static int ff_thread_once(char *control, void(*routine)(void))
Definition: thread.h:175
#define AV_ONCE_INIT
Definition: thread.h:173
int stride
Definition: mace.c:144
#define M_PI_2
Definition: mathematics.h:55
#define M_SQRT1_2
Definition: mathematics.h:58
#define M_PI
Definition: mathematics.h:52
#define CMUL3(c, a, b)
Definition: mdct15.c:41
static void fft5(FFTComplex *out, FFTComplex *in, FFTComplex exptab[2])
Definition: mdct15.c:92
#define t5
Definition: regdef.h:33
#define t6
Definition: regdef.h:34
#define t4
Definition: regdef.h:32
#define t8
Definition: regdef.h:53
#define t1
Definition: regdef.h:29
#define t3
Definition: regdef.h:31
#define t2
Definition: regdef.h:30
#define t7
Definition: regdef.h:35
typedef void(RENAME(mix_any_func_type))
#define FF_ARRAY_ELEMS(a)
FFTSample re
Definition: avfft.h:38
FFTSample im
Definition: avfft.h:38
#define av_malloc_array(a, b)
#define av_malloc(s)
static uint8_t tmp[11]
Definition: aes_ctr.c:27
#define src1
Definition: h264pred.c:140
#define src0
Definition: h264pred.c:139
#define src
Definition: vp8dsp.c:255
FILE * out
Definition: movenc.c:54
static const struct twinvq_data tab
int ff_tx_gen_ptwo_revtab(AVTXContext *s, int invert_lookup)
Definition: tx.c:94
int ff_tx_gen_ptwo_inplace_revtab_idx(AVTXContext *s)
Definition: tx.c:113
int ff_tx_gen_compound_mapping(AVTXContext *s)
Definition: tx.c:44
int ff_tx_type_is_mdct(enum AVTXType type)
Definition: tx.c:21
@ AV_TX_INPLACE
Performs an in-place transformation on the input.
Definition: tx.h:110
AVTXType
Definition: tx.h:39
void(* av_tx_fn)(AVTXContext *s, void *out, void *in, ptrdiff_t stride)
Function pointer to a function to perform the transform.
Definition: tx.h:99
void FFTComplex
Definition: tx_priv.h:46
int TX_NAME() ff_tx_init_mdct_fft(AVTXContext *s, av_tx_fn *tx, enum AVTXType type, int inv, int len, const void *scale, uint64_t flags)
Definition: tx_template.c:668
static CosTabsInitOnce cos_tabs_init_once[]
Definition: tx_template.c:103
#define DECL_FFT5(NAME, D0, D1, D2, D3, D4)
Definition: tx_template.c:165
static void monolithic_fft(AVTXContext *s, void *_out, void *_in, ptrdiff_t stride)
Definition: tx_template.c:389
static void fft4(FFTComplex *z)
Definition: tx_template.c:297
COSTABLE(16)
static void(*const fft_dispatch[])(FFTComplex *)
Definition: tx_template.c:357
static av_always_inline void init_cos_tabs_idx(int index)
Definition: tx_template.c:63
#define PASS(name)
Definition: tx_template.c:254
static av_always_inline void fft3(FFTComplex *out, FFTComplex *in, ptrdiff_t stride)
Definition: tx_template.c:130
static void naive_fft(AVTXContext *s, void *_out, void *_in, ptrdiff_t stride)
Definition: tx_template.c:419
#define DECL_COMP_FFT(N)
Definition: tx_template.c:362
#define INIT_FF_COS_TABS_FUNC(index, size)
Definition: tx_template.c:74
static av_cold void ff_init_53_tabs(void)
Definition: tx_template.c:95
static av_cold void init_cos_tabs(int index)
Definition: tx_template.c:124
static void fft8(FFTComplex *z)
Definition: tx_template.c:311
static void fft2(FFTComplex *z)
Definition: tx_template.c:289
static void monolithic_imdct(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride)
Definition: tx_template.c:534
static void naive_imdct(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride)
Definition: tx_template.c:600
#define DECL_COMP_IMDCT(N)
Definition: tx_template.c:444
#define pass
Definition: tx_template.c:347
#define BUTTERFLIES(a0, a1, a2, a3)
Definition: tx_template.c:277
static av_always_inline void fft15(FFTComplex *out, FFTComplex *in, ptrdiff_t stride)
Definition: tx_template.c:204
static void fft16(FFTComplex *z)
Definition: tx_template.c:326
#define DECL_FFT(n, n2, n4)
Definition: tx_template.c:280
static void monolithic_mdct(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride)
Definition: tx_template.c:563
static FFTSample *const cos_tabs[18]
Definition: tx_template.c:42
#define TRANSFORM_ZERO(a0, a1, a2, a3)
Definition: tx_template.c:245
#define DECL_COMP_MDCT(N)
Definition: tx_template.c:486
#define CHECK_FACTOR(DST, FACTOR, SRC)
FFTComplex TX_NAME(ff_cos_53)[4]
#define TRANSFORM(a0, a1, a2, a3, wre, wim)
Definition: tx_template.c:239
static int gen_mdct_exptab(AVTXContext *s, int len4, double scale)
Definition: tx_template.c:651
static void naive_mdct(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride)
Definition: tx_template.c:630
#define mb
static const int factor[16]
Definition: vf_pp7.c:77
int len