FFmpeg  4.4.6
twinvq.c
Go to the documentation of this file.
1 /*
2  * TwinVQ decoder
3  * Copyright (c) 2009 Vitor Sessak
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include <math.h>
23 #include <stdint.h>
24 
26 #include "libavutil/float_dsp.h"
27 #include "avcodec.h"
28 #include "fft.h"
29 #include "internal.h"
30 #include "lsp.h"
31 #include "sinewin.h"
32 #include "twinvq.h"
33 
34 /**
35  * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
36  * spectrum pairs.
37  *
38  * @param lsp a vector of the cosine of the LSP values
39  * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
40  * @param order the order of the LSP (and the size of the *lsp buffer). Must
41  * be a multiple of four.
42  * @return the LPC value
43  *
44  * @todo reuse code from Vorbis decoder: vorbis_floor0_decode
45  */
46 static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
47 {
48  int j;
49  float p = 0.5f;
50  float q = 0.5f;
51  float two_cos_w = 2.0f * cos_val;
52 
53  for (j = 0; j + 1 < order; j += 2 * 2) {
54  // Unroll the loop once since order is a multiple of four
55  q *= lsp[j] - two_cos_w;
56  p *= lsp[j + 1] - two_cos_w;
57 
58  q *= lsp[j + 2] - two_cos_w;
59  p *= lsp[j + 3] - two_cos_w;
60  }
61 
62  p *= p * (2.0f - two_cos_w);
63  q *= q * (2.0f + two_cos_w);
64 
65  return 0.5 / (p + q);
66 }
67 
68 /**
69  * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
70  */
71 static void eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc)
72 {
73  int i;
74  const TwinVQModeTab *mtab = tctx->mtab;
75  int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
76 
77  for (i = 0; i < size_s / 2; i++) {
78  float cos_i = tctx->cos_tabs[0][i];
79  lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
80  lpc[size_s - i - 1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
81  }
82 }
83 
84 static void interpolate(float *out, float v1, float v2, int size)
85 {
86  int i;
87  float step = (v1 - v2) / (size + 1);
88 
89  for (i = 0; i < size; i++) {
90  v2 += step;
91  out[i] = v2;
92  }
93 }
94 
95 static inline float get_cos(int idx, int part, const float *cos_tab, int size)
96 {
97  return part ? -cos_tab[size - idx - 1]
98  : cos_tab[idx];
99 }
100 
101 /**
102  * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
103  * Probably for speed reasons, the coefficients are evaluated as
104  * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
105  * where s is an evaluated value, i is a value interpolated from the others
106  * and b might be either calculated or interpolated, depending on an
107  * unexplained condition.
108  *
109  * @param step the size of a block "siiiibiiii"
110  * @param in the cosine of the LSP data
111  * @param part is 0 for 0...PI (positive cosine values) and 1 for PI...2PI
112  * (negative cosine values)
113  * @param size the size of the whole output
114  */
115 static inline void eval_lpcenv_or_interp(TwinVQContext *tctx,
116  enum TwinVQFrameType ftype,
117  float *out, const float *in,
118  int size, int step, int part)
119 {
120  int i;
121  const TwinVQModeTab *mtab = tctx->mtab;
122  const float *cos_tab = tctx->cos_tabs[ftype];
123 
124  // Fill the 's'
125  for (i = 0; i < size; i += step)
126  out[i] =
128  get_cos(i, part, cos_tab, size),
129  mtab->n_lsp);
130 
131  // Fill the 'iiiibiiii'
132  for (i = step; i <= size - 2 * step; i += step) {
133  if (out[i + step] + out[i - step] > 1.95 * out[i] ||
134  out[i + step] >= out[i - step]) {
135  interpolate(out + i - step + 1, out[i], out[i - step], step - 1);
136  } else {
137  out[i - step / 2] =
139  get_cos(i - step / 2, part, cos_tab, size),
140  mtab->n_lsp);
141  interpolate(out + i - step + 1, out[i - step / 2],
142  out[i - step], step / 2 - 1);
143  interpolate(out + i - step / 2 + 1, out[i],
144  out[i - step / 2], step / 2 - 1);
145  }
146  }
147 
148  interpolate(out + size - 2 * step + 1, out[size - step],
149  out[size - 2 * step], step - 1);
150 }
151 
152 static void eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype,
153  const float *buf, float *lpc,
154  int size, int step)
155 {
156  eval_lpcenv_or_interp(tctx, ftype, lpc, buf, size / 2, step, 0);
157  eval_lpcenv_or_interp(tctx, ftype, lpc + size / 2, buf, size / 2,
158  2 * step, 1);
159 
160  interpolate(lpc + size / 2 - step + 1, lpc[size / 2],
161  lpc[size / 2 - step], step);
162 
163  twinvq_memset_float(lpc + size - 2 * step + 1, lpc[size - 2 * step],
164  2 * step - 1);
165 }
166 
167 /**
168  * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
169  * bitstream, sum the corresponding vectors and write the result to *out
170  * after permutation.
171  */
172 static void dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out,
173  enum TwinVQFrameType ftype,
174  const int16_t *cb0, const int16_t *cb1, int cb_len)
175 {
176  int pos = 0;
177  int i, j;
178 
179  for (i = 0; i < tctx->n_div[ftype]; i++) {
180  int tmp0, tmp1;
181  int sign0 = 1;
182  int sign1 = 1;
183  const int16_t *tab0, *tab1;
184  int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
185  int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
186 
187  int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
188  tmp0 = *cb_bits++;
189  if (bits == 7) {
190  if (tmp0 & 0x40)
191  sign0 = -1;
192  tmp0 &= 0x3F;
193  }
194 
195  bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
196  tmp1 = *cb_bits++;
197  if (bits == 7) {
198  if (tmp1 & 0x40)
199  sign1 = -1;
200  tmp1 &= 0x3F;
201  }
202 
203  tab0 = cb0 + tmp0 * cb_len;
204  tab1 = cb1 + tmp1 * cb_len;
205 
206  for (j = 0; j < length; j++)
207  out[tctx->permut[ftype][pos + j]] = sign0 * tab0[j] +
208  sign1 * tab1[j];
209 
210  pos += length;
211  }
212 }
213 
214 static void dec_gain(TwinVQContext *tctx,
215  enum TwinVQFrameType ftype, float *out)
216 {
217  const TwinVQModeTab *mtab = tctx->mtab;
218  const TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame];
219  int i, j;
220  int sub = mtab->fmode[ftype].sub;
221  float step = TWINVQ_AMP_MAX / ((1 << TWINVQ_GAIN_BITS) - 1);
222  float sub_step = TWINVQ_SUB_AMP_MAX / ((1 << TWINVQ_SUB_GAIN_BITS) - 1);
223 
224  if (ftype == TWINVQ_FT_LONG) {
225  for (i = 0; i < tctx->avctx->channels; i++)
226  out[i] = (1.0 / (1 << 13)) *
227  twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
229  } else {
230  for (i = 0; i < tctx->avctx->channels; i++) {
231  float val = (1.0 / (1 << 23)) *
232  twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
234 
235  for (j = 0; j < sub; j++)
236  out[i * sub + j] =
237  val * twinvq_mulawinv(sub_step * 0.5 +
238  sub_step * bits->sub_gain_bits[i * sub + j],
240  }
241  }
242 }
243 
244 /**
245  * Rearrange the LSP coefficients so that they have a minimum distance of
246  * min_dist. This function does it exactly as described in section of 3.2.4
247  * of the G.729 specification (but interestingly is different from what the
248  * reference decoder actually does).
249  */
250 static void rearrange_lsp(int order, float *lsp, float min_dist)
251 {
252  int i;
253  float min_dist2 = min_dist * 0.5;
254  for (i = 1; i < order; i++)
255  if (lsp[i] - lsp[i - 1] < min_dist) {
256  float avg = (lsp[i] + lsp[i - 1]) * 0.5;
257 
258  lsp[i - 1] = avg - min_dist2;
259  lsp[i] = avg + min_dist2;
260  }
261 }
262 
263 static void decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
264  int lpc_hist_idx, float *lsp, float *hist)
265 {
266  const TwinVQModeTab *mtab = tctx->mtab;
267  int i, j;
268 
269  const float *cb = mtab->lspcodebook;
270  const float *cb2 = cb + (1 << mtab->lsp_bit1) * mtab->n_lsp;
271  const float *cb3 = cb2 + (1 << mtab->lsp_bit2) * mtab->n_lsp;
272 
273  const int8_t funny_rounding[4] = {
274  -2,
275  mtab->lsp_split == 4 ? -2 : 1,
276  mtab->lsp_split == 4 ? -2 : 1,
277  0
278  };
279 
280  j = 0;
281  for (i = 0; i < mtab->lsp_split; i++) {
282  int chunk_end = ((i + 1) * mtab->n_lsp + funny_rounding[i]) /
283  mtab->lsp_split;
284  for (; j < chunk_end; j++)
285  lsp[j] = cb[lpc_idx1 * mtab->n_lsp + j] +
286  cb2[lpc_idx2[i] * mtab->n_lsp + j];
287  }
288 
289  rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
290 
291  for (i = 0; i < mtab->n_lsp; i++) {
292  float tmp1 = 1.0 - cb3[lpc_hist_idx * mtab->n_lsp + i];
293  float tmp2 = hist[i] * cb3[lpc_hist_idx * mtab->n_lsp + i];
294  hist[i] = lsp[i];
295  lsp[i] = lsp[i] * tmp1 + tmp2;
296  }
297 
298  rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
299  rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
301 }
302 
303 static void dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp,
304  enum TwinVQFrameType ftype, float *lpc)
305 {
306  int i;
307  int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
308 
309  for (i = 0; i < tctx->mtab->n_lsp; i++)
310  lsp[i] = 2 * cos(lsp[i]);
311 
312  switch (ftype) {
313  case TWINVQ_FT_LONG:
314  eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
315  break;
316  case TWINVQ_FT_MEDIUM:
317  eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
318  break;
319  case TWINVQ_FT_SHORT:
320  eval_lpcenv(tctx, lsp, lpc);
321  break;
322  }
323 }
324 
325 static const uint8_t wtype_to_wsize[] = { 0, 0, 2, 2, 2, 1, 0, 1, 1 };
326 
327 static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype,
328  int wtype, float *in, float *prev, int ch)
329 {
330  FFTContext *mdct = &tctx->mdct_ctx[ftype];
331  const TwinVQModeTab *mtab = tctx->mtab;
332  int bsize = mtab->size / mtab->fmode[ftype].sub;
333  int size = mtab->size;
334  float *buf1 = tctx->tmp_buf;
335  int j, first_wsize, wsize; // Window size
336  float *out = tctx->curr_frame + 2 * ch * mtab->size;
337  float *out2 = out;
338  float *prev_buf;
339  int types_sizes[] = {
340  mtab->size / mtab->fmode[TWINVQ_FT_LONG].sub,
341  mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub,
342  mtab->size / (mtab->fmode[TWINVQ_FT_SHORT].sub * 2),
343  };
344 
345  wsize = types_sizes[wtype_to_wsize[wtype]];
346  first_wsize = wsize;
347  prev_buf = prev + (size - bsize) / 2;
348 
349  for (j = 0; j < mtab->fmode[ftype].sub; j++) {
350  int sub_wtype = ftype == TWINVQ_FT_MEDIUM ? 8 : wtype;
351 
352  if (!j && wtype == 4)
353  sub_wtype = 4;
354  else if (j == mtab->fmode[ftype].sub - 1 && wtype == 7)
355  sub_wtype = 7;
356 
357  wsize = types_sizes[wtype_to_wsize[sub_wtype]];
358 
359  mdct->imdct_half(mdct, buf1 + bsize * j, in + bsize * j);
360 
361  tctx->fdsp->vector_fmul_window(out2, prev_buf + (bsize - wsize) / 2,
362  buf1 + bsize * j,
363  ff_sine_windows[av_log2(wsize)],
364  wsize / 2);
365  out2 += wsize;
366 
367  memcpy(out2, buf1 + bsize * j + wsize / 2,
368  (bsize - wsize / 2) * sizeof(float));
369 
370  out2 += ftype == TWINVQ_FT_MEDIUM ? (bsize - wsize) / 2 : bsize - wsize;
371 
372  prev_buf = buf1 + bsize * j + bsize / 2;
373  }
374 
375  tctx->last_block_pos[ch] = (size + first_wsize) / 2;
376 }
377 
378 static void imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype,
379  int wtype, float **out, int offset)
380 {
381  const TwinVQModeTab *mtab = tctx->mtab;
382  float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
383  int size1, size2, i;
384  float *out1, *out2;
385 
386  for (i = 0; i < tctx->avctx->channels; i++)
387  imdct_and_window(tctx, ftype, wtype,
388  tctx->spectrum + i * mtab->size,
389  prev_buf + 2 * i * mtab->size,
390  i);
391 
392  if (!out)
393  return;
394 
395  size2 = tctx->last_block_pos[0];
396  size1 = mtab->size - size2;
397 
398  out1 = &out[0][0] + offset;
399  memcpy(out1, prev_buf, size1 * sizeof(*out1));
400  memcpy(out1 + size1, tctx->curr_frame, size2 * sizeof(*out1));
401 
402  if (tctx->avctx->channels == 2) {
403  out2 = &out[1][0] + offset;
404  memcpy(out2, &prev_buf[2 * mtab->size],
405  size1 * sizeof(*out2));
406  memcpy(out2 + size1, &tctx->curr_frame[2 * mtab->size],
407  size2 * sizeof(*out2));
408  tctx->fdsp->butterflies_float(out1, out2, mtab->size);
409  }
410 }
411 
412 static void read_and_decode_spectrum(TwinVQContext *tctx, float *out,
413  enum TwinVQFrameType ftype)
414 {
415  const TwinVQModeTab *mtab = tctx->mtab;
416  TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame];
417  int channels = tctx->avctx->channels;
418  int sub = mtab->fmode[ftype].sub;
419  int block_size = mtab->size / sub;
421  float ppc_shape[TWINVQ_PPC_SHAPE_LEN_MAX * TWINVQ_CHANNELS_MAX * 4];
422 
423  int i, j;
424 
425  dequant(tctx, bits->main_coeffs, out, ftype,
426  mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
427  mtab->fmode[ftype].cb_len_read);
428 
429  dec_gain(tctx, ftype, gain);
430 
431  if (ftype == TWINVQ_FT_LONG) {
432  int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len * channels - 1) /
433  tctx->n_div[3];
434  dequant(tctx, bits->ppc_coeffs, ppc_shape,
436  mtab->ppc_shape_cb + cb_len_p * TWINVQ_PPC_SHAPE_CB_SIZE,
437  cb_len_p);
438  }
439 
440  for (i = 0; i < channels; i++) {
441  float *chunk = out + mtab->size * i;
442  float lsp[TWINVQ_LSP_COEFS_MAX];
443 
444  for (j = 0; j < sub; j++) {
445  tctx->dec_bark_env(tctx, bits->bark1[i][j],
446  bits->bark_use_hist[i][j], i,
447  tctx->tmp_buf, gain[sub * i + j], ftype);
448 
449  tctx->fdsp->vector_fmul(chunk + block_size * j,
450  chunk + block_size * j,
451  tctx->tmp_buf, block_size);
452  }
453 
454  if (ftype == TWINVQ_FT_LONG)
455  tctx->decode_ppc(tctx, bits->p_coef[i], bits->g_coef[i],
456  ppc_shape + i * mtab->ppc_shape_len, chunk);
457 
458  decode_lsp(tctx, bits->lpc_idx1[i], bits->lpc_idx2[i],
459  bits->lpc_hist_idx[i], lsp, tctx->lsp_hist[i]);
460 
461  dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
462 
463  for (j = 0; j < mtab->fmode[ftype].sub; j++) {
464  tctx->fdsp->vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
465  chunk += block_size;
466  }
467  }
468 }
469 
474 };
475 
477  int *got_frame_ptr, AVPacket *avpkt)
478 {
479  AVFrame *frame = data;
480  const uint8_t *buf = avpkt->data;
481  int buf_size = avpkt->size;
482  TwinVQContext *tctx = avctx->priv_data;
483  const TwinVQModeTab *mtab = tctx->mtab;
484  float **out = NULL;
485  int ret;
486 
487  /* get output buffer */
488  if (tctx->discarded_packets >= 2) {
489  frame->nb_samples = mtab->size * tctx->frames_per_packet;
490  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
491  return ret;
492  out = (float **)frame->extended_data;
493  }
494 
495  if (buf_size < avctx->block_align) {
496  av_log(avctx, AV_LOG_ERROR,
497  "Frame too small (%d bytes). Truncated file?\n", buf_size);
498  return AVERROR(EINVAL);
499  }
500 
501  if ((ret = tctx->read_bitstream(avctx, tctx, buf, buf_size)) < 0)
502  return ret;
503 
504  for (tctx->cur_frame = 0; tctx->cur_frame < tctx->frames_per_packet;
505  tctx->cur_frame++) {
507  tctx->bits[tctx->cur_frame].ftype);
508 
509  imdct_output(tctx, tctx->bits[tctx->cur_frame].ftype,
510  tctx->bits[tctx->cur_frame].window_type, out,
511  tctx->cur_frame * mtab->size);
512 
513  FFSWAP(float *, tctx->curr_frame, tctx->prev_frame);
514  }
515 
516  if (tctx->discarded_packets < 2) {
517  tctx->discarded_packets++;
518  *got_frame_ptr = 0;
519  return buf_size;
520  }
521 
522  *got_frame_ptr = 1;
523 
524  // VQF can deliver packets 1 byte greater than block align
525  if (buf_size == avctx->block_align + 1)
526  return buf_size;
527  return avctx->block_align;
528 }
529 
530 /**
531  * Init IMDCT and windowing tables
532  */
534 {
535  int i, j, ret;
536  const TwinVQModeTab *mtab = tctx->mtab;
537  int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
538  int size_m = mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub;
539  int channels = tctx->avctx->channels;
540  float norm = channels == 1 ? 2.0 : 1.0;
541  int table_size = 2 * mtab->size * channels;
542 
543  for (i = 0; i < 3; i++) {
544  int bsize = tctx->mtab->size / tctx->mtab->fmode[i].sub;
545  if ((ret = ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
546  -sqrt(norm / bsize) / (1 << 15))))
547  return ret;
548  }
549 
550  if (!FF_ALLOC_TYPED_ARRAY(tctx->tmp_buf, mtab->size) ||
551  !FF_ALLOC_TYPED_ARRAY(tctx->spectrum, table_size) ||
552  !FF_ALLOC_TYPED_ARRAY(tctx->curr_frame, table_size) ||
553  !FF_ALLOC_TYPED_ARRAY(tctx->prev_frame, table_size))
554  return AVERROR(ENOMEM);
555 
556  for (i = 0; i < 3; i++) {
557  int m = 4 * mtab->size / mtab->fmode[i].sub;
558  double freq = 2 * M_PI / m;
559  if (!FF_ALLOC_TYPED_ARRAY(tctx->cos_tabs[i], m / 4))
560  return AVERROR(ENOMEM);
561  for (j = 0; j <= m / 8; j++)
562  tctx->cos_tabs[i][j] = cos((2 * j + 1) * freq);
563  for (j = 1; j < m / 8; j++)
564  tctx->cos_tabs[i][m / 4 - j] = tctx->cos_tabs[i][j];
565  }
566 
568  ff_init_ff_sine_windows(av_log2(size_s / 2));
570 
571  return 0;
572 }
573 
574 /**
575  * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
576  * each line do a cyclic permutation, i.e.
577  * abcdefghijklm -> defghijklmabc
578  * where the amount to be shifted is evaluated depending on the column.
579  */
580 static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
581  int block_size,
582  const uint8_t line_len[2], int length_div,
583  enum TwinVQFrameType ftype)
584 {
585  int i, j;
586 
587  for (i = 0; i < line_len[0]; i++) {
588  int shift;
589 
590  if (num_blocks == 1 ||
591  (ftype == TWINVQ_FT_LONG && num_vect % num_blocks) ||
592  (ftype != TWINVQ_FT_LONG && num_vect & 1) ||
593  i == line_len[1]) {
594  shift = 0;
595  } else if (ftype == TWINVQ_FT_LONG) {
596  shift = i;
597  } else
598  shift = i * i;
599 
600  for (j = 0; j < num_vect && (j + num_vect * i < block_size * num_blocks); j++)
601  tab[i * num_vect + j] = i * num_vect + (j + shift) % num_vect;
602  }
603 }
604 
605 /**
606  * Interpret the input data as in the following table:
607  *
608  * @verbatim
609  *
610  * abcdefgh
611  * ijklmnop
612  * qrstuvw
613  * x123456
614  *
615  * @endverbatim
616  *
617  * and transpose it, giving the output
618  * aiqxbjr1cks2dlt3emu4fvn5gow6hp
619  */
620 static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
621  const uint8_t line_len[2], int length_div)
622 {
623  int i, j;
624  int cont = 0;
625 
626  for (i = 0; i < num_vect; i++)
627  for (j = 0; j < line_len[i >= length_div]; j++)
628  out[cont++] = in[j * num_vect + i];
629 }
630 
631 static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
632 {
633  int block_size = size / n_blocks;
634  int i;
635 
636  for (i = 0; i < size; i++)
637  out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
638 }
639 
641  enum TwinVQFrameType ftype)
642 {
643  int block_size, size;
644  const TwinVQModeTab *mtab = tctx->mtab;
645  int16_t *tmp_perm = (int16_t *)tctx->tmp_buf;
646 
647  if (ftype == TWINVQ_FT_PPC) {
648  size = tctx->avctx->channels;
649  block_size = mtab->ppc_shape_len;
650  } else {
651  size = tctx->avctx->channels * mtab->fmode[ftype].sub;
652  block_size = mtab->size / mtab->fmode[ftype].sub;
653  }
654 
655  permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
656  block_size, tctx->length[ftype],
657  tctx->length_change[ftype], ftype);
658 
659  transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
660  tctx->length[ftype], tctx->length_change[ftype]);
661 
662  linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
663  size * block_size);
664 }
665 
667 {
668  const TwinVQModeTab *mtab = tctx->mtab;
669  int n_ch = tctx->avctx->channels;
670  int total_fr_bits = tctx->avctx->bit_rate * mtab->size /
671  tctx->avctx->sample_rate;
672 
673  int lsp_bits_per_block = n_ch * (mtab->lsp_bit0 + mtab->lsp_bit1 +
674  mtab->lsp_split * mtab->lsp_bit2);
675 
676  int ppc_bits = n_ch * (mtab->pgain_bit + mtab->ppc_shape_bit +
677  mtab->ppc_period_bit);
678 
679  int bsize_no_main_cb[3], bse_bits[3], i;
680  enum TwinVQFrameType frametype;
681 
682  for (i = 0; i < 3; i++)
683  // +1 for history usage switch
684  bse_bits[i] = n_ch *
685  (mtab->fmode[i].bark_n_coef *
686  mtab->fmode[i].bark_n_bit + 1);
687 
688  bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
690 
691  for (i = 0; i < 2; i++)
692  bsize_no_main_cb[i] =
693  lsp_bits_per_block + n_ch * TWINVQ_GAIN_BITS +
695  mtab->fmode[i].sub * (bse_bits[i] + n_ch * TWINVQ_SUB_GAIN_BITS);
696 
697  if (tctx->codec == TWINVQ_CODEC_METASOUND && !tctx->is_6kbps) {
698  bsize_no_main_cb[1] += 2;
699  bsize_no_main_cb[2] += 2;
700  }
701 
702  // The remaining bits are all used for the main spectrum coefficients
703  for (i = 0; i < 4; i++) {
704  int bit_size, vect_size;
705  int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
706  if (i == 3) {
707  bit_size = n_ch * mtab->ppc_shape_bit;
708  vect_size = n_ch * mtab->ppc_shape_len;
709  } else {
710  bit_size = total_fr_bits - bsize_no_main_cb[i];
711  vect_size = n_ch * mtab->size;
712  }
713 
714  tctx->n_div[i] = (bit_size + 13) / 14;
715 
716  rounded_up = (bit_size + tctx->n_div[i] - 1) /
717  tctx->n_div[i];
718  rounded_down = (bit_size) / tctx->n_div[i];
719  num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
720  num_rounded_up = tctx->n_div[i] - num_rounded_down;
721  tctx->bits_main_spec[0][i][0] = (rounded_up + 1) / 2;
722  tctx->bits_main_spec[1][i][0] = rounded_up / 2;
723  tctx->bits_main_spec[0][i][1] = (rounded_down + 1) / 2;
724  tctx->bits_main_spec[1][i][1] = rounded_down / 2;
725  tctx->bits_main_spec_change[i] = num_rounded_up;
726 
727  rounded_up = (vect_size + tctx->n_div[i] - 1) /
728  tctx->n_div[i];
729  rounded_down = (vect_size) / tctx->n_div[i];
730  num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
731  num_rounded_up = tctx->n_div[i] - num_rounded_down;
732  tctx->length[i][0] = rounded_up;
733  tctx->length[i][1] = rounded_down;
734  tctx->length_change[i] = num_rounded_up;
735  }
736 
737  for (frametype = TWINVQ_FT_SHORT; frametype <= TWINVQ_FT_PPC; frametype++)
738  construct_perm_table(tctx, frametype);
739 }
740 
742 {
743  TwinVQContext *tctx = avctx->priv_data;
744  int i;
745 
746  for (i = 0; i < 3; i++) {
747  ff_mdct_end(&tctx->mdct_ctx[i]);
748  av_freep(&tctx->cos_tabs[i]);
749  }
750 
751  av_freep(&tctx->curr_frame);
752  av_freep(&tctx->spectrum);
753  av_freep(&tctx->prev_frame);
754  av_freep(&tctx->tmp_buf);
755  av_freep(&tctx->fdsp);
756 
757  return 0;
758 }
759 
761 {
762  int ret;
763  TwinVQContext *tctx = avctx->priv_data;
764  int64_t frames_per_packet;
765 
766  tctx->avctx = avctx;
768 
769  if (!avctx->block_align) {
770  avctx->block_align = tctx->frame_size + 7 >> 3;
771  }
772  frames_per_packet = avctx->block_align * 8LL / tctx->frame_size;
773  if (frames_per_packet <= 0) {
774  av_log(avctx, AV_LOG_ERROR, "Block align is %"PRId64" bits, expected %d\n",
775  avctx->block_align * (int64_t)8, tctx->frame_size);
776  return AVERROR_INVALIDDATA;
777  }
778  if (frames_per_packet > TWINVQ_MAX_FRAMES_PER_PACKET) {
779  av_log(avctx, AV_LOG_ERROR, "Too many frames per packet (%"PRId64")\n",
780  frames_per_packet);
781  return AVERROR_INVALIDDATA;
782  }
783  tctx->frames_per_packet = frames_per_packet;
784 
786  if (!tctx->fdsp) {
787  ff_twinvq_decode_close(avctx);
788  return AVERROR(ENOMEM);
789  }
790  if ((ret = init_mdct_win(tctx))) {
791  av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
792  ff_twinvq_decode_close(avctx);
793  return ret;
794  }
795  init_bitstream_params(tctx);
796 
797  twinvq_memset_float(tctx->bark_hist[0][0], 0.1,
798  FF_ARRAY_ELEMS(tctx->bark_hist));
799 
800  return 0;
801 }
static double val(void *priv, double ch)
Definition: aeval.c:76
channels
Definition: aptx.h:33
#define av_cold
Definition: attributes.h:88
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
uint8_t
Libavcodec external API header.
audio channel layout utility functions
#define avg(a, b, c, d)
#define FFSWAP(type, a, b)
Definition: common.h:108
#define NULL
Definition: coverity.c:32
long long int64_t
Definition: coverity.c:34
static float cos_tab[256]
Definition: dca_lbr.c:124
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1900
static AVFrame * frame
static float sub(float src0, float src1)
#define ff_mdct_init
Definition: fft.h:161
#define ff_mdct_end
Definition: fft.h:162
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
Definition: avcodec.h:333
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define AVERROR(e)
Definition: error.h:43
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
@ AV_SAMPLE_FMT_FLTP
float, planar
Definition: samplefmt.h:69
int i
Definition: input.c:407
#define av_log2
Definition: intmath.h:83
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
Definition: float_dsp.c:135
common internal API header
#define FF_ALLOC_TYPED_ARRAY(p, nelem)
Definition: internal.h:102
void ff_sort_nearly_sorted_floats(float *vals, int len)
Sort values in ascending order.
Definition: lsp.c:228
const int16_t * tab1
Definition: mace.c:144
#define M_PI
Definition: mathematics.h:52
const char data[16]
Definition: mxf.c:142
void ff_init_ff_sine_windows(int index)
initialize the specified entry of ff_sine_windows
SINETABLE_CONST float *const ff_sine_windows[]
#define FF_ARRAY_ELEMS(a)
static int shift(int a, int b)
Definition: sonic.c:82
unsigned int pos
Definition: spdifenc.c:412
main external API structure.
Definition: avcodec.h:536
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:1204
int64_t bit_rate
the average bitrate
Definition: avcodec.h:586
int sample_rate
samples per second
Definition: avcodec.h:1196
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:616
int channels
number of audio channels
Definition: avcodec.h:1197
int block_align
number of bytes per packet if constant and known or 0 Used by some WAV based audio codecs.
Definition: avcodec.h:1233
void * priv_data
Definition: avcodec.h:563
void(* butterflies_float)(float *av_restrict v1, float *av_restrict v2, int len)
Calculate the sum and difference of two vectors of floats.
Definition: float_dsp.h:164
void(* vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, int len)
Overlap/add with window function.
Definition: float_dsp.h:119
void(* vector_fmul)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats and store the result in a vector of floats.
Definition: float_dsp.h:38
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:384
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:365
This structure stores compressed data.
Definition: packet.h:346
int size
Definition: packet.h:370
uint8_t * data
Definition: packet.h:369
Definition: fft.h:83
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:103
enum TwinVQCodec codec
Definition: twinvq.h:172
int last_block_pos[2]
Definition: twinvq.h:161
float bark_hist[3][2][40]
BSE coefficients of last frame.
Definition: twinvq.h:148
AVCodecContext * avctx
Definition: twinvq.h:138
uint8_t length[4][2]
main codebook stride
Definition: twinvq.h:152
const TwinVQModeTab * mtab
Definition: twinvq.h:142
int(* read_bitstream)(AVCodecContext *avctx, struct TwinVQContext *tctx, const uint8_t *buf, int buf_size)
Definition: twinvq.h:174
int16_t permut[4][4096]
Definition: twinvq.h:151
void(* dec_bark_env)(struct TwinVQContext *tctx, const uint8_t *in, int use_hist, int ch, float *out, float gain, enum TwinVQFrameType ftype)
Definition: twinvq.h:176
TwinVQFrameData bits[TWINVQ_MAX_FRAMES_PER_PACKET]
Definition: twinvq.h:170
float * spectrum
Definition: twinvq.h:158
float * tmp_buf
Definition: twinvq.h:167
int n_div[4]
Definition: twinvq.h:156
float lsp_hist[2][20]
LSP coefficients of the last frame.
Definition: twinvq.h:147
int discarded_packets
Definition: twinvq.h:162
float * cos_tabs[3]
Definition: twinvq.h:164
float * prev_frame
non-interleaved previous frame
Definition: twinvq.h:160
int is_6kbps
Definition: twinvq.h:144
uint8_t length_change[4]
Definition: twinvq.h:153
AVFloatDSPContext * fdsp
Definition: twinvq.h:139
void(* decode_ppc)(struct TwinVQContext *tctx, int period_coef, int g_coef, const float *shape, float *speech)
Definition: twinvq.h:179
int frame_size
Definition: twinvq.h:169
float * curr_frame
non-interleaved output
Definition: twinvq.h:159
uint8_t bits_main_spec[2][4][2]
bits for the main codebook
Definition: twinvq.h:154
int bits_main_spec_change[4]
Definition: twinvq.h:155
FFTContext mdct_ctx[3]
Definition: twinvq.h:140
int frames_per_packet
Definition: twinvq.h:169
int cur_frame
Definition: twinvq.h:169
enum TwinVQFrameType ftype
Definition: twinvq.h:88
int window_type
Definition: twinvq.h:87
uint8_t bark_n_bit
number of bits of the BSE coefs
Definition: twinvq.h:75
uint8_t bark_n_coef
number of BSE CB coefficients to read
Definition: twinvq.h:74
uint8_t sub
Number subblocks in each frame.
Definition: twinvq.h:67
uint8_t cb_len_read
number of spectrum coefficients to read
Definition: twinvq.h:83
const int16_t * cb1
Definition: twinvq.h:80
const int16_t * cb0
main codebooks for spectrum data
Definition: twinvq.h:79
Parameters and tables that are different for every combination of bitrate/sample rate.
Definition: twinvq.h:111
uint8_t ppc_shape_bit
number of bits of the PPC shape CB coeffs
Definition: twinvq.h:129
uint8_t ppc_shape_len
size of PPC shape CB
Definition: twinvq.h:130
uint8_t lsp_split
number of CB entries for the LSP decoding
Definition: twinvq.h:123
uint8_t lsp_bit2
Definition: twinvq.h:121
uint8_t n_lsp
number of lsp coefficients
Definition: twinvq.h:115
struct TwinVQFrameMode fmode[3]
frame type-dependent parameters
Definition: twinvq.h:112
const float * lspcodebook
Definition: twinvq.h:116
uint8_t ppc_period_bit
number of the bits for the PPC period value
Definition: twinvq.h:127
const int16_t * ppc_shape_cb
PPC shape CB.
Definition: twinvq.h:124
uint8_t lsp_bit0
Definition: twinvq.h:119
uint16_t size
frame size in samples
Definition: twinvq.h:114
uint8_t lsp_bit1
Definition: twinvq.h:120
uint8_t pgain_bit
bits for PPC gain
Definition: twinvq.h:131
#define av_freep(p)
#define av_log(a,...)
FILE * out
Definition: movenc.c:54
static av_cold void construct_perm_table(TwinVQContext *tctx, enum TwinVQFrameType ftype)
Definition: twinvq.c:640
static av_cold int init_mdct_win(TwinVQContext *tctx)
Init IMDCT and windowing tables.
Definition: twinvq.c:533
static void transpose_perm(int16_t *out, int16_t *in, int num_vect, const uint8_t line_len[2], int length_div)
Interpret the input data as in the following table:
Definition: twinvq.c:620
enum TwinVQFrameType ff_twinvq_wtype_to_ftype_table[]
Definition: twinvq.c:470
static void eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc)
Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
Definition: twinvq.c:71
static void dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp, enum TwinVQFrameType ftype, float *lpc)
Definition: twinvq.c:303
static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype, int wtype, float *in, float *prev, int ch)
Definition: twinvq.c:327
static void eval_lpcenv_or_interp(TwinVQContext *tctx, enum TwinVQFrameType ftype, float *out, const float *in, int size, int step, int part)
Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
Definition: twinvq.c:115
int ff_twinvq_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Definition: twinvq.c:476
static void dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out, enum TwinVQFrameType ftype, const int16_t *cb0, const int16_t *cb1, int cb_len)
Inverse quantization.
Definition: twinvq.c:172
static void dec_gain(TwinVQContext *tctx, enum TwinVQFrameType ftype, float *out)
Definition: twinvq.c:214
static void decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2, int lpc_hist_idx, float *lsp, float *hist)
Definition: twinvq.c:263
static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
Definition: twinvq.c:631
static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks, int block_size, const uint8_t line_len[2], int length_div, enum TwinVQFrameType ftype)
Interpret the data as if it were a num_blocks x line_len[0] matrix and for each line do a cyclic perm...
Definition: twinvq.c:580
static av_cold void init_bitstream_params(TwinVQContext *tctx)
Definition: twinvq.c:666
static float get_cos(int idx, int part, const float *cos_tab, int size)
Definition: twinvq.c:95
static const uint8_t wtype_to_wsize[]
Definition: twinvq.c:325
av_cold int ff_twinvq_decode_close(AVCodecContext *avctx)
Definition: twinvq.c:741
static void imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype, int wtype, float **out, int offset)
Definition: twinvq.c:378
static void interpolate(float *out, float v1, float v2, int size)
Definition: twinvq.c:84
static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
Evaluate a single LPC amplitude spectrum envelope coefficient from the line spectrum pairs.
Definition: twinvq.c:46
static void rearrange_lsp(int order, float *lsp, float min_dist)
Rearrange the LSP coefficients so that they have a minimum distance of min_dist.
Definition: twinvq.c:250
av_cold int ff_twinvq_decode_init(AVCodecContext *avctx)
Definition: twinvq.c:760
static void read_and_decode_spectrum(TwinVQContext *tctx, float *out, enum TwinVQFrameType ftype)
Definition: twinvq.c:412
static void eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype, const float *buf, float *lpc, int size, int step)
Definition: twinvq.c:152
#define TWINVQ_PPC_SHAPE_LEN_MAX
Definition: twinvq.h:47
#define TWINVQ_CHANNELS_MAX
Definition: twinvq.h:57
#define TWINVQ_MAX_FRAMES_PER_PACKET
Definition: twinvq.h:61
#define TWINVQ_SUB_GAIN_BITS
Definition: twinvq.h:52
#define TWINVQ_MULAW_MU
Definition: twinvq.h:49
#define TWINVQ_WINDOW_TYPE_BITS
Definition: twinvq.h:53
@ TWINVQ_CODEC_METASOUND
Definition: twinvq.h:36
#define TWINVQ_PPC_SHAPE_CB_SIZE
Definition: twinvq.h:46
#define TWINVQ_LSP_COEFS_MAX
Definition: twinvq.h:55
TwinVQFrameType
Definition: twinvq.h:39
@ TWINVQ_FT_MEDIUM
Medium frame (divided in m<n sub-blocks)
Definition: twinvq.h:41
@ TWINVQ_FT_LONG
Long frame (single sub-block + PPC)
Definition: twinvq.h:42
@ TWINVQ_FT_SHORT
Short frame (divided in n sub-blocks)
Definition: twinvq.h:40
@ TWINVQ_FT_PPC
Periodic Peak Component (part of the long frame)
Definition: twinvq.h:43
#define TWINVQ_GAIN_BITS
Definition: twinvq.h:50
#define TWINVQ_SUBBLOCKS_MAX
Definition: twinvq.h:58
#define TWINVQ_AMP_MAX
Definition: twinvq.h:51
#define TWINVQ_SUB_AMP_MAX
Definition: twinvq.h:48
static float twinvq_mulawinv(float y, float clip, float mu)
Definition: twinvq.h:192
static void twinvq_memset_float(float *buf, float val, int size)
Definition: twinvq.h:186
int size
static const struct twinvq_data tab
static double cb(void *priv, double x, double y)
Definition: vf_geq.c:215
if(ret< 0)
Definition: vf_mcdeint.c:282
static const uint8_t offset[127][2]
Definition: vf_spp.c:107
uint8_t bits
Definition: vp3data.h:141
static int chunk_end(AVFormatContext *s, int flush)
Definition: webm_chunk.c:182