FFmpeg  4.4.6
rv34.c
Go to the documentation of this file.
1 /*
2  * RV30/40 decoder common data
3  * Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * RV30/40 decoder common data
25  */
26 
27 #include "libavutil/avassert.h"
28 #include "libavutil/imgutils.h"
29 #include "libavutil/internal.h"
30 #include "libavutil/mem_internal.h"
31 #include "libavutil/thread.h"
33 
34 #include "avcodec.h"
35 #include "error_resilience.h"
36 #include "mpegutils.h"
37 #include "mpegvideo.h"
38 #include "golomb.h"
39 #include "internal.h"
40 #include "mathops.h"
41 #include "mpeg_er.h"
42 #include "qpeldsp.h"
43 #include "rectangle.h"
44 #include "thread.h"
45 
46 #include "rv34vlc.h"
47 #include "rv34data.h"
48 #include "rv34.h"
49 
50 static inline void ZERO8x2(void* dst, int stride)
51 {
52  fill_rectangle(dst, 1, 2, stride, 0, 4);
53  fill_rectangle(((uint8_t*)(dst))+4, 1, 2, stride, 0, 4);
54 }
55 
56 /** translation of RV30/40 macroblock types to lavc ones */
57 static const int rv34_mb_type_to_lavc[12] = {
70 };
71 
72 
74 
75 static int rv34_decode_mv(RV34DecContext *r, int block_type);
76 
77 /**
78  * @name RV30/40 VLC generating functions
79  * @{
80  */
81 
82 static VLC_TYPE table_data[117592][2];
83 
84 /**
85  * Generate VLC from codeword lengths.
86  * @param bits codeword lengths (zeroes are accepted)
87  * @param size length of input data
88  * @param vlc output VLC
89  * @param insyms symbols for input codes (NULL for default ones)
90  * @param num VLC table number (for static initialization)
91  */
92 static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *syms,
93  int *offset)
94 {
95  int counts[17] = {0}, codes[17];
96  uint16_t cw[MAX_VLC_SIZE];
97  int maxbits;
98 
99  av_assert1(size > 0);
100 
101  for (int i = 0; i < size; i++)
102  counts[bits[i]]++;
103 
104  /* bits[0] is zero for some tables, i.e. syms actually starts at 1.
105  * So we reset it here. The code assigned to this element is 0x00. */
106  codes[0] = counts[0] = 0;
107  for (int i = 0; i < 16; i++) {
108  codes[i+1] = (codes[i] + counts[i]) << 1;
109  if (counts[i])
110  maxbits = i;
111  }
112  for (int i = 0; i < size; i++)
113  cw[i] = codes[bits[i]]++;
114 
115  vlc->table = &table_data[*offset];
117  ff_init_vlc_sparse(vlc, FFMIN(maxbits, 9), size,
118  bits, 1, 1,
119  cw, 2, 2,
120  syms, !!syms, !!syms, INIT_VLC_STATIC_OVERLONG);
121  *offset += vlc->table_size;
122 }
123 
124 /**
125  * Initialize all tables.
126  */
127 static av_cold void rv34_init_tables(void)
128 {
129  int i, j, k, offset = 0;
130 
131  for(i = 0; i < NUM_INTRA_TABLES; i++){
132  for(j = 0; j < 2; j++){
134  &intra_vlcs[i].cbppattern[j], NULL, &offset);
136  &intra_vlcs[i].second_pattern[j], NULL, &offset);
138  &intra_vlcs[i].third_pattern[j], NULL, &offset);
139  for(k = 0; k < 4; k++){
141  &intra_vlcs[i].cbp[j][k], rv34_cbp_code, &offset);
142  }
143  }
144  for(j = 0; j < 4; j++){
146  &intra_vlcs[i].first_pattern[j], NULL, &offset);
147  }
149  &intra_vlcs[i].coefficient, NULL, &offset);
150  }
151 
152  for(i = 0; i < NUM_INTER_TABLES; i++){
154  &inter_vlcs[i].cbppattern[0], NULL, &offset);
155  for(j = 0; j < 4; j++){
157  &inter_vlcs[i].cbp[0][j], rv34_cbp_code, &offset);
158  }
159  for(j = 0; j < 2; j++){
161  &inter_vlcs[i].first_pattern[j], NULL, &offset);
163  &inter_vlcs[i].second_pattern[j], NULL, &offset);
165  &inter_vlcs[i].third_pattern[j], NULL, &offset);
166  }
168  &inter_vlcs[i].coefficient, NULL, &offset);
169  }
170 }
171 
172 /** @} */ // vlc group
173 
174 /**
175  * @name RV30/40 4x4 block decoding functions
176  * @{
177  */
178 
179 /**
180  * Decode coded block pattern.
181  */
182 static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
183 {
184  int pattern, code, cbp=0;
185  int ones;
186  static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
187  static const int shifts[4] = { 0, 2, 8, 10 };
188  const int *curshift = shifts;
189  int i, t, mask;
190 
191  code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
192  pattern = code & 0xF;
193  code >>= 4;
194 
195  ones = rv34_count_ones[pattern];
196 
197  for(mask = 8; mask; mask >>= 1, curshift++){
198  if(pattern & mask)
199  cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
200  }
201 
202  for(i = 0; i < 4; i++){
203  t = (modulo_three_table[code] >> (6 - 2*i)) & 3;
204  if(t == 1)
205  cbp |= cbp_masks[get_bits1(gb)] << i;
206  if(t == 2)
207  cbp |= cbp_masks[2] << i;
208  }
209  return cbp;
210 }
211 
212 /**
213  * Get one coefficient value from the bitstream and store it.
214  */
215 static inline void decode_coeff(int16_t *dst, int coef, int esc, GetBitContext *gb, VLC* vlc, int q)
216 {
217  if(coef){
218  if(coef == esc){
219  coef = get_vlc2(gb, vlc->table, 9, 2);
220  if(coef > 23){
221  coef -= 23;
222  coef = 22 + ((1 << coef) | get_bits(gb, coef));
223  }
224  coef += esc;
225  }
226  if(get_bits1(gb))
227  coef = -coef;
228  *dst = (coef*q + 8) >> 4;
229  }
230 }
231 
232 /**
233  * Decode 2x2 subblock of coefficients.
234  */
235 static inline void decode_subblock(int16_t *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc, int q)
236 {
238 
239  decode_coeff( dst+0*4+0, (flags >> 6) , 3, gb, vlc, q);
240  if(is_block2){
241  decode_coeff(dst+1*4+0, (flags >> 4) & 3, 2, gb, vlc, q);
242  decode_coeff(dst+0*4+1, (flags >> 2) & 3, 2, gb, vlc, q);
243  }else{
244  decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q);
245  decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q);
246  }
247  decode_coeff( dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q);
248 }
249 
250 /**
251  * Decode a single coefficient.
252  */
253 static inline void decode_subblock1(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q)
254 {
255  int coeff = modulo_three_table[code] >> 6;
256  decode_coeff(dst, coeff, 3, gb, vlc, q);
257 }
258 
259 static inline void decode_subblock3(int16_t *dst, int code, GetBitContext *gb, VLC *vlc,
260  int q_dc, int q_ac1, int q_ac2)
261 {
263 
264  decode_coeff(dst+0*4+0, (flags >> 6) , 3, gb, vlc, q_dc);
265  decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q_ac1);
266  decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q_ac1);
267  decode_coeff(dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q_ac2);
268 }
269 
270 /**
271  * Decode coefficients for 4x4 block.
272  *
273  * This is done by filling 2x2 subblocks with decoded coefficients
274  * in this order (the same for subblocks and subblock coefficients):
275  * o--o
276  * /
277  * /
278  * o--o
279  */
280 
281 static int rv34_decode_block(int16_t *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc, int q_dc, int q_ac1, int q_ac2)
282 {
283  int code, pattern, has_ac = 1;
284 
285  code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
286 
287  pattern = code & 0x7;
288 
289  code >>= 3;
290 
291  if (modulo_three_table[code] & 0x3F) {
292  decode_subblock3(dst, code, gb, &rvlc->coefficient, q_dc, q_ac1, q_ac2);
293  } else {
294  decode_subblock1(dst, code, gb, &rvlc->coefficient, q_dc);
295  if (!pattern)
296  return 0;
297  has_ac = 0;
298  }
299 
300  if(pattern & 4){
301  code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
302  decode_subblock(dst + 4*0+2, code, 0, gb, &rvlc->coefficient, q_ac2);
303  }
304  if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
305  code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
306  decode_subblock(dst + 4*2+0, code, 1, gb, &rvlc->coefficient, q_ac2);
307  }
308  if(pattern & 1){
309  code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
310  decode_subblock(dst + 4*2+2, code, 0, gb, &rvlc->coefficient, q_ac2);
311  }
312  return has_ac | pattern;
313 }
314 
315 /**
316  * @name RV30/40 bitstream parsing
317  * @{
318  */
319 
320 /**
321  * Decode starting slice position.
322  * @todo Maybe replace with ff_h263_decode_mba() ?
323  */
325 {
326  int i;
327  for(i = 0; i < 5; i++)
328  if(rv34_mb_max_sizes[i] >= mb_size - 1)
329  break;
330  return rv34_mb_bits_sizes[i];
331 }
332 
333 /**
334  * Select VLC set for decoding from current quantizer, modifier and frame type.
335  */
336 static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
337 {
338  if(mod == 2 && quant < 19) quant += 10;
339  else if(mod && quant < 26) quant += 5;
340  av_assert2(quant >= 0 && quant < 32);
343 }
344 
345 /**
346  * Decode intra macroblock header and return CBP in case of success, -1 otherwise.
347  */
348 static int rv34_decode_intra_mb_header(RV34DecContext *r, int8_t *intra_types)
349 {
350  MpegEncContext *s = &r->s;
351  GetBitContext *gb = &s->gb;
352  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
353  int t;
354 
355  r->is16 = get_bits1(gb);
356  if(r->is16){
357  s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA16x16;
358  r->block_type = RV34_MB_TYPE_INTRA16x16;
359  t = get_bits(gb, 2);
360  fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
361  r->luma_vlc = 2;
362  }else{
363  if(!r->rv30){
364  if(!get_bits1(gb))
365  av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
366  }
367  s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA;
368  r->block_type = RV34_MB_TYPE_INTRA;
369  if(r->decode_intra_types(r, gb, intra_types) < 0)
370  return -1;
371  r->luma_vlc = 1;
372  }
373 
374  r->chroma_vlc = 0;
375  r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
376 
377  return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
378 }
379 
380 /**
381  * Decode inter macroblock header and return CBP in case of success, -1 otherwise.
382  */
383 static int rv34_decode_inter_mb_header(RV34DecContext *r, int8_t *intra_types)
384 {
385  MpegEncContext *s = &r->s;
386  GetBitContext *gb = &s->gb;
387  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
388  int i, t;
389 
390  r->block_type = r->decode_mb_info(r);
391  if(r->block_type == -1)
392  return -1;
393  s->current_picture_ptr->mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
394  r->mb_type[mb_pos] = r->block_type;
395  if(r->block_type == RV34_MB_SKIP){
396  if(s->pict_type == AV_PICTURE_TYPE_P)
397  r->mb_type[mb_pos] = RV34_MB_P_16x16;
398  if(s->pict_type == AV_PICTURE_TYPE_B)
399  r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
400  }
401  r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]);
402  if (rv34_decode_mv(r, r->block_type) < 0)
403  return -1;
404  if(r->block_type == RV34_MB_SKIP){
405  fill_rectangle(intra_types, 4, 4, r->intra_types_stride, 0, sizeof(intra_types[0]));
406  return 0;
407  }
408  r->chroma_vlc = 1;
409  r->luma_vlc = 0;
410 
411  if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
412  if(r->is16){
413  t = get_bits(gb, 2);
414  fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
415  r->luma_vlc = 2;
416  }else{
417  if(r->decode_intra_types(r, gb, intra_types) < 0)
418  return -1;
419  r->luma_vlc = 1;
420  }
421  r->chroma_vlc = 0;
422  r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
423  }else{
424  for(i = 0; i < 16; i++)
425  intra_types[(i & 3) + (i>>2) * r->intra_types_stride] = 0;
426  r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
427  if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
428  r->is16 = 1;
429  r->chroma_vlc = 1;
430  r->luma_vlc = 2;
431  r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
432  }
433  }
434 
435  return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
436 }
437 
438 /** @} */ //bitstream functions
439 
440 /**
441  * @name motion vector related code (prediction, reconstruction, motion compensation)
442  * @{
443  */
444 
445 /** macroblock partition width in 8x8 blocks */
446 static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
447 
448 /** macroblock partition height in 8x8 blocks */
449 static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
450 
451 /** availability index for subblocks */
452 static const uint8_t avail_indexes[4] = { 6, 7, 10, 11 };
453 
454 /**
455  * motion vector prediction
456  *
457  * Motion prediction performed for the block by using median prediction of
458  * motion vectors from the left, top and right top blocks but in corner cases
459  * some other vectors may be used instead.
460  */
461 static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
462 {
463  MpegEncContext *s = &r->s;
464  int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
465  int A[2] = {0}, B[2], C[2];
466  int i, j;
467  int mx, my;
468  int* avail = r->avail_cache + avail_indexes[subblock_no];
469  int c_off = part_sizes_w[block_type];
470 
471  mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
472  if(subblock_no == 3)
473  c_off = -1;
474 
475  if(avail[-1]){
476  A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
477  A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
478  }
479  if(avail[-4]){
480  B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
481  B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
482  }else{
483  B[0] = A[0];
484  B[1] = A[1];
485  }
486  if(!avail[c_off-4]){
487  if(avail[-4] && (avail[-1] || r->rv30)){
488  C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
489  C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
490  }else{
491  C[0] = A[0];
492  C[1] = A[1];
493  }
494  }else{
495  C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0];
496  C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1];
497  }
498  mx = mid_pred(A[0], B[0], C[0]);
499  my = mid_pred(A[1], B[1], C[1]);
500  mx += r->dmv[dmv_no][0];
501  my += r->dmv[dmv_no][1];
502  for(j = 0; j < part_sizes_h[block_type]; j++){
503  for(i = 0; i < part_sizes_w[block_type]; i++){
504  s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
505  s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
506  }
507  }
508 }
509 
510 #define GET_PTS_DIFF(a, b) (((a) - (b) + 8192) & 0x1FFF)
511 
512 /**
513  * Calculate motion vector component that should be added for direct blocks.
514  */
515 static int calc_add_mv(RV34DecContext *r, int dir, int val)
516 {
517  int mul = dir ? -r->mv_weight2 : r->mv_weight1;
518 
519  return (int)(val * (SUINT)mul + 0x2000) >> 14;
520 }
521 
522 /**
523  * Predict motion vector for B-frame macroblock.
524  */
525 static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
526  int A_avail, int B_avail, int C_avail,
527  int *mx, int *my)
528 {
529  if(A_avail + B_avail + C_avail != 3){
530  *mx = A[0] + B[0] + C[0];
531  *my = A[1] + B[1] + C[1];
532  if(A_avail + B_avail + C_avail == 2){
533  *mx /= 2;
534  *my /= 2;
535  }
536  }else{
537  *mx = mid_pred(A[0], B[0], C[0]);
538  *my = mid_pred(A[1], B[1], C[1]);
539  }
540 }
541 
542 /**
543  * motion vector prediction for B-frames
544  */
545 static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
546 {
547  MpegEncContext *s = &r->s;
548  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
549  int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
550  int A[2] = { 0 }, B[2] = { 0 }, C[2] = { 0 };
551  int has_A = 0, has_B = 0, has_C = 0;
552  int mx, my;
553  int i, j;
554  Picture *cur_pic = s->current_picture_ptr;
555  const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
556  int type = cur_pic->mb_type[mb_pos];
557 
558  if((r->avail_cache[6-1] & type) & mask){
559  A[0] = cur_pic->motion_val[dir][mv_pos - 1][0];
560  A[1] = cur_pic->motion_val[dir][mv_pos - 1][1];
561  has_A = 1;
562  }
563  if((r->avail_cache[6-4] & type) & mask){
564  B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0];
565  B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1];
566  has_B = 1;
567  }
568  if(r->avail_cache[6-4] && (r->avail_cache[6-2] & type) & mask){
569  C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0];
570  C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1];
571  has_C = 1;
572  }else if((s->mb_x+1) == s->mb_width && (r->avail_cache[6-5] & type) & mask){
573  C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0];
574  C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1];
575  has_C = 1;
576  }
577 
578  rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
579 
580  mx += r->dmv[dir][0];
581  my += r->dmv[dir][1];
582 
583  for(j = 0; j < 2; j++){
584  for(i = 0; i < 2; i++){
585  cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
586  cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
587  }
588  }
589  if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD){
590  ZERO8x2(cur_pic->motion_val[!dir][mv_pos], s->b8_stride);
591  }
592 }
593 
594 /**
595  * motion vector prediction - RV3 version
596  */
597 static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
598 {
599  MpegEncContext *s = &r->s;
600  int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
601  int A[2] = {0}, B[2], C[2];
602  int i, j, k;
603  int mx, my;
604  int* avail = r->avail_cache + avail_indexes[0];
605 
606  if(avail[-1]){
607  A[0] = s->current_picture_ptr->motion_val[0][mv_pos - 1][0];
608  A[1] = s->current_picture_ptr->motion_val[0][mv_pos - 1][1];
609  }
610  if(avail[-4]){
611  B[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][0];
612  B[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][1];
613  }else{
614  B[0] = A[0];
615  B[1] = A[1];
616  }
617  if(!avail[-4 + 2]){
618  if(avail[-4] && (avail[-1])){
619  C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][0];
620  C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][1];
621  }else{
622  C[0] = A[0];
623  C[1] = A[1];
624  }
625  }else{
626  C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][0];
627  C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][1];
628  }
629  mx = mid_pred(A[0], B[0], C[0]);
630  my = mid_pred(A[1], B[1], C[1]);
631  mx += r->dmv[0][0];
632  my += r->dmv[0][1];
633  for(j = 0; j < 2; j++){
634  for(i = 0; i < 2; i++){
635  for(k = 0; k < 2; k++){
636  s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx;
637  s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][1] = my;
638  }
639  }
640  }
641 }
642 
643 static const int chroma_coeffs[3] = { 0, 3, 5 };
644 
645 /**
646  * generic motion compensation function
647  *
648  * @param r decoder context
649  * @param block_type type of the current block
650  * @param xoff horizontal offset from the start of the current block
651  * @param yoff vertical offset from the start of the current block
652  * @param mv_off offset to the motion vector information
653  * @param width width of the current partition in 8x8 blocks
654  * @param height height of the current partition in 8x8 blocks
655  * @param dir motion compensation direction (i.e. from the last or the next reference frame)
656  * @param thirdpel motion vectors are specified in 1/3 of pixel
657  * @param qpel_mc a set of functions used to perform luma motion compensation
658  * @param chroma_mc a set of functions used to perform chroma motion compensation
659  */
660 static inline void rv34_mc(RV34DecContext *r, const int block_type,
661  const int xoff, const int yoff, int mv_off,
662  const int width, const int height, int dir,
663  const int thirdpel, int weighted,
664  qpel_mc_func (*qpel_mc)[16],
666 {
667  MpegEncContext *s = &r->s;
668  uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
669  int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
670  int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
671  int is16x16 = 1;
672  int emu = 0;
673 
674  if(thirdpel){
675  int chroma_mx, chroma_my;
676  mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
677  my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
678  lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
679  ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
680  chroma_mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
681  chroma_my = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
682  umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
683  umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
684  uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3];
685  uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3];
686  }else{
687  int cx, cy;
688  mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
689  my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
690  lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
691  ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
692  cx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
693  cy = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
694  umx = cx >> 2;
695  umy = cy >> 2;
696  uvmx = (cx & 3) << 1;
697  uvmy = (cy & 3) << 1;
698  //due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3
699  if(uvmx == 6 && uvmy == 6)
700  uvmx = uvmy = 4;
701  }
702 
703  if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
704  /* wait for the referenced mb row to be finished */
705  int mb_row = s->mb_y + ((yoff + my + 5 + 8 * height) >> 4);
706  ThreadFrame *f = dir ? &s->next_picture_ptr->tf : &s->last_picture_ptr->tf;
707  ff_thread_await_progress(f, mb_row, 0);
708  }
709 
710  dxy = ly*4 + lx;
711  srcY = dir ? s->next_picture_ptr->f->data[0] : s->last_picture_ptr->f->data[0];
712  srcU = dir ? s->next_picture_ptr->f->data[1] : s->last_picture_ptr->f->data[1];
713  srcV = dir ? s->next_picture_ptr->f->data[2] : s->last_picture_ptr->f->data[2];
714  src_x = s->mb_x * 16 + xoff + mx;
715  src_y = s->mb_y * 16 + yoff + my;
716  uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx;
717  uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy;
718  srcY += src_y * s->linesize + src_x;
719  srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
720  srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
721  if(s->h_edge_pos - (width << 3) < 6 || s->v_edge_pos - (height << 3) < 6 ||
722  (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4 ||
723  (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4) {
724  srcY -= 2 + 2*s->linesize;
725  s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, srcY,
726  s->linesize, s->linesize,
727  (width << 3) + 6, (height << 3) + 6,
728  src_x - 2, src_y - 2,
729  s->h_edge_pos, s->v_edge_pos);
730  srcY = s->sc.edge_emu_buffer + 2 + 2*s->linesize;
731  emu = 1;
732  }
733  if(!weighted){
734  Y = s->dest[0] + xoff + yoff *s->linesize;
735  U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
736  V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
737  }else{
738  Y = r->tmp_b_block_y [dir] + xoff + yoff *s->linesize;
739  U = r->tmp_b_block_uv[dir*2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
740  V = r->tmp_b_block_uv[dir*2+1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
741  }
742 
743  if(block_type == RV34_MB_P_16x8){
744  qpel_mc[1][dxy](Y, srcY, s->linesize);
745  Y += 8;
746  srcY += 8;
747  }else if(block_type == RV34_MB_P_8x16){
748  qpel_mc[1][dxy](Y, srcY, s->linesize);
749  Y += 8 * s->linesize;
750  srcY += 8 * s->linesize;
751  }
752  is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
753  qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
754  if (emu) {
755  uint8_t *uvbuf = s->sc.edge_emu_buffer;
756 
757  s->vdsp.emulated_edge_mc(uvbuf, srcU,
758  s->uvlinesize, s->uvlinesize,
759  (width << 2) + 1, (height << 2) + 1,
760  uvsrc_x, uvsrc_y,
761  s->h_edge_pos >> 1, s->v_edge_pos >> 1);
762  srcU = uvbuf;
763  uvbuf += 9*s->uvlinesize;
764 
765  s->vdsp.emulated_edge_mc(uvbuf, srcV,
766  s->uvlinesize, s->uvlinesize,
767  (width << 2) + 1, (height << 2) + 1,
768  uvsrc_x, uvsrc_y,
769  s->h_edge_pos >> 1, s->v_edge_pos >> 1);
770  srcV = uvbuf;
771  }
772  chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
773  chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
774 }
775 
776 static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
777  const int xoff, const int yoff, int mv_off,
778  const int width, const int height, int dir)
779 {
780  rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30, 0,
781  r->rdsp.put_pixels_tab,
782  r->rdsp.put_chroma_pixels_tab);
783 }
784 
786 {
787  r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][0](r->s.dest[0],
788  r->tmp_b_block_y[0],
789  r->tmp_b_block_y[1],
790  r->weight1,
791  r->weight2,
792  r->s.linesize);
793  r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[1],
794  r->tmp_b_block_uv[0],
795  r->tmp_b_block_uv[2],
796  r->weight1,
797  r->weight2,
798  r->s.uvlinesize);
799  r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[2],
800  r->tmp_b_block_uv[1],
801  r->tmp_b_block_uv[3],
802  r->weight1,
803  r->weight2,
804  r->s.uvlinesize);
805 }
806 
807 static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
808 {
809  int weighted = !r->rv30 && block_type != RV34_MB_B_BIDIR && r->weight1 != 8192;
810 
811  rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30, weighted,
812  r->rdsp.put_pixels_tab,
813  r->rdsp.put_chroma_pixels_tab);
814  if(!weighted){
815  rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 0,
816  r->rdsp.avg_pixels_tab,
817  r->rdsp.avg_chroma_pixels_tab);
818  }else{
819  rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 1,
820  r->rdsp.put_pixels_tab,
821  r->rdsp.put_chroma_pixels_tab);
822  rv4_weight(r);
823  }
824 }
825 
827 {
828  int i, j;
829  int weighted = !r->rv30 && r->weight1 != 8192;
830 
831  for(j = 0; j < 2; j++)
832  for(i = 0; i < 2; i++){
833  rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
834  weighted,
835  r->rdsp.put_pixels_tab,
836  r->rdsp.put_chroma_pixels_tab);
837  rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
838  weighted,
839  weighted ? r->rdsp.put_pixels_tab : r->rdsp.avg_pixels_tab,
840  weighted ? r->rdsp.put_chroma_pixels_tab : r->rdsp.avg_chroma_pixels_tab);
841  }
842  if(weighted)
843  rv4_weight(r);
844 }
845 
846 /** number of motion vectors in each macroblock type */
847 static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
848 
849 /**
850  * Decode motion vector differences
851  * and perform motion vector reconstruction and motion compensation.
852  */
853 static int rv34_decode_mv(RV34DecContext *r, int block_type)
854 {
855  MpegEncContext *s = &r->s;
856  GetBitContext *gb = &s->gb;
857  int i, j, k, l;
858  int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
859  int next_bt;
860 
861  memset(r->dmv, 0, sizeof(r->dmv));
862  for(i = 0; i < num_mvs[block_type]; i++){
863  r->dmv[i][0] = get_interleaved_se_golomb(gb);
864  r->dmv[i][1] = get_interleaved_se_golomb(gb);
865  if (r->dmv[i][0] == INVALID_VLC ||
866  r->dmv[i][1] == INVALID_VLC) {
867  r->dmv[i][0] = r->dmv[i][1] = 0;
868  return AVERROR_INVALIDDATA;
869  }
870  }
871  switch(block_type){
872  case RV34_MB_TYPE_INTRA:
874  ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
875  return 0;
876  case RV34_MB_SKIP:
877  if(s->pict_type == AV_PICTURE_TYPE_P){
878  ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
879  rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
880  break;
881  }
882  case RV34_MB_B_DIRECT:
883  //surprisingly, it uses motion scheme from next reference frame
884  /* wait for the current mb row to be finished */
885  if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
886  ff_thread_await_progress(&s->next_picture_ptr->tf, FFMAX(0, s->mb_y-1), 0);
887 
888  next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride];
889  if(IS_INTRA(next_bt) || IS_SKIP(next_bt)){
890  ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
891  ZERO8x2(s->current_picture_ptr->motion_val[1][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
892  }else
893  for(j = 0; j < 2; j++)
894  for(i = 0; i < 2; i++)
895  for(k = 0; k < 2; k++)
896  for(l = 0; l < 2; l++)
897  s->current_picture_ptr->motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k]);
898  if(!(IS_16X8(next_bt) || IS_8X16(next_bt) || IS_8X8(next_bt))) //we can use whole macroblock MC
899  rv34_mc_2mv(r, block_type);
900  else
902  ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
903  break;
904  case RV34_MB_P_16x16:
905  case RV34_MB_P_MIX16x16:
906  rv34_pred_mv(r, block_type, 0, 0);
907  rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
908  break;
909  case RV34_MB_B_FORWARD:
910  case RV34_MB_B_BACKWARD:
911  r->dmv[1][0] = r->dmv[0][0];
912  r->dmv[1][1] = r->dmv[0][1];
913  if(r->rv30)
914  rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD);
915  else
916  rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
917  rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
918  break;
919  case RV34_MB_P_16x8:
920  case RV34_MB_P_8x16:
921  rv34_pred_mv(r, block_type, 0, 0);
922  rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
923  if(block_type == RV34_MB_P_16x8){
924  rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
925  rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
926  }
927  if(block_type == RV34_MB_P_8x16){
928  rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
929  rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
930  }
931  break;
932  case RV34_MB_B_BIDIR:
933  rv34_pred_mv_b (r, block_type, 0);
934  rv34_pred_mv_b (r, block_type, 1);
935  rv34_mc_2mv (r, block_type);
936  break;
937  case RV34_MB_P_8x8:
938  for(i=0;i< 4;i++){
939  rv34_pred_mv(r, block_type, i, i);
940  rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
941  }
942  break;
943  }
944 
945  return 0;
946 }
947 /** @} */ // mv group
948 
949 /**
950  * @name Macroblock reconstruction functions
951  * @{
952  */
953 /** mapping of RV30/40 intra prediction types to standard H.264 types */
954 static const int ittrans[9] = {
957 };
958 
959 /** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
960 static const int ittrans16[4] = {
962 };
963 
964 /**
965  * Perform 4x4 intra prediction.
966  */
967 static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
968 {
969  uint8_t *prev = dst - stride + 4;
970  uint32_t topleft;
971 
972  if(!up && !left)
973  itype = DC_128_PRED;
974  else if(!up){
975  if(itype == VERT_PRED) itype = HOR_PRED;
976  if(itype == DC_PRED) itype = LEFT_DC_PRED;
977  }else if(!left){
978  if(itype == HOR_PRED) itype = VERT_PRED;
979  if(itype == DC_PRED) itype = TOP_DC_PRED;
981  }
982  if(!down){
984  if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
985  if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
986  }
987  if(!right && up){
988  topleft = dst[-stride + 3] * 0x01010101u;
989  prev = (uint8_t*)&topleft;
990  }
991  r->h.pred4x4[itype](dst, prev, stride);
992 }
993 
994 static inline int adjust_pred16(int itype, int up, int left)
995 {
996  if(!up && !left)
997  itype = DC_128_PRED8x8;
998  else if(!up){
999  if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
1000  if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
1001  if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
1002  }else if(!left){
1003  if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
1004  if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
1005  if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
1006  }
1007  return itype;
1008 }
1009 
1011  uint8_t *pdst, int stride,
1012  int fc, int sc, int q_dc, int q_ac)
1013 {
1014  MpegEncContext *s = &r->s;
1015  int16_t *ptr = s->block[0];
1016  int has_ac = rv34_decode_block(ptr, &s->gb, r->cur_vlcs,
1017  fc, sc, q_dc, q_ac, q_ac);
1018  if(has_ac){
1019  r->rdsp.rv34_idct_add(pdst, stride, ptr);
1020  }else{
1021  r->rdsp.rv34_idct_dc_add(pdst, stride, ptr[0]);
1022  ptr[0] = 0;
1023  }
1024 }
1025 
1026 static void rv34_output_i16x16(RV34DecContext *r, int8_t *intra_types, int cbp)
1027 {
1028  LOCAL_ALIGNED_16(int16_t, block16, [16]);
1029  MpegEncContext *s = &r->s;
1030  GetBitContext *gb = &s->gb;
1031  int q_dc = rv34_qscale_tab[ r->luma_dc_quant_i[s->qscale] ],
1032  q_ac = rv34_qscale_tab[s->qscale];
1033  uint8_t *dst = s->dest[0];
1034  int16_t *ptr = s->block[0];
1035  int i, j, itype, has_ac;
1036 
1037  memset(block16, 0, 16 * sizeof(*block16));
1038 
1039  has_ac = rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac);
1040  if(has_ac)
1041  r->rdsp.rv34_inv_transform(block16);
1042  else
1043  r->rdsp.rv34_inv_transform_dc(block16);
1044 
1045  itype = ittrans16[intra_types[0]];
1046  itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
1047  r->h.pred16x16[itype](dst, s->linesize);
1048 
1049  for(j = 0; j < 4; j++){
1050  for(i = 0; i < 4; i++, cbp >>= 1){
1051  int dc = block16[i + j*4];
1052 
1053  if(cbp & 1){
1054  has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
1055  }else
1056  has_ac = 0;
1057 
1058  if(has_ac){
1059  ptr[0] = dc;
1060  r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
1061  }else
1062  r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
1063  }
1064 
1065  dst += 4*s->linesize;
1066  }
1067 
1068  itype = ittrans16[intra_types[0]];
1069  if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
1070  itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
1071 
1072  q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
1073  q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
1074 
1075  for(j = 1; j < 3; j++){
1076  dst = s->dest[j];
1077  r->h.pred8x8[itype](dst, s->uvlinesize);
1078  for(i = 0; i < 4; i++, cbp >>= 1){
1079  uint8_t *pdst;
1080  if(!(cbp & 1)) continue;
1081  pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
1082 
1083  rv34_process_block(r, pdst, s->uvlinesize,
1084  r->chroma_vlc, 1, q_dc, q_ac);
1085  }
1086  }
1087 }
1088 
1089 static void rv34_output_intra(RV34DecContext *r, int8_t *intra_types, int cbp)
1090 {
1091  MpegEncContext *s = &r->s;
1092  uint8_t *dst = s->dest[0];
1093  int avail[6*8] = {0};
1094  int i, j, k;
1095  int idx, q_ac, q_dc;
1096 
1097  // Set neighbour information.
1098  if(r->avail_cache[1])
1099  avail[0] = 1;
1100  if(r->avail_cache[2])
1101  avail[1] = avail[2] = 1;
1102  if(r->avail_cache[3])
1103  avail[3] = avail[4] = 1;
1104  if(r->avail_cache[4])
1105  avail[5] = 1;
1106  if(r->avail_cache[5])
1107  avail[8] = avail[16] = 1;
1108  if(r->avail_cache[9])
1109  avail[24] = avail[32] = 1;
1110 
1111  q_ac = rv34_qscale_tab[s->qscale];
1112  for(j = 0; j < 4; j++){
1113  idx = 9 + j*8;
1114  for(i = 0; i < 4; i++, cbp >>= 1, dst += 4, idx++){
1115  rv34_pred_4x4_block(r, dst, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
1116  avail[idx] = 1;
1117  if(!(cbp & 1)) continue;
1118 
1119  rv34_process_block(r, dst, s->linesize,
1120  r->luma_vlc, 0, q_ac, q_ac);
1121  }
1122  dst += s->linesize * 4 - 4*4;
1123  intra_types += r->intra_types_stride;
1124  }
1125 
1126  intra_types -= r->intra_types_stride * 4;
1127 
1128  q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
1129  q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
1130 
1131  for(k = 0; k < 2; k++){
1132  dst = s->dest[1+k];
1133  fill_rectangle(r->avail_cache + 6, 2, 2, 4, 0, 4);
1134 
1135  for(j = 0; j < 2; j++){
1136  int* acache = r->avail_cache + 6 + j*4;
1137  for(i = 0; i < 2; i++, cbp >>= 1, acache++){
1138  int itype = ittrans[intra_types[i*2+j*2*r->intra_types_stride]];
1139  rv34_pred_4x4_block(r, dst+4*i, s->uvlinesize, itype, acache[-4], acache[-1], !i && !j, acache[-3]);
1140  acache[0] = 1;
1141 
1142  if(!(cbp&1)) continue;
1143 
1144  rv34_process_block(r, dst + 4*i, s->uvlinesize,
1145  r->chroma_vlc, 1, q_dc, q_ac);
1146  }
1147 
1148  dst += 4*s->uvlinesize;
1149  }
1150  }
1151 }
1152 
1153 static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step)
1154 {
1155  int d;
1156  d = motion_val[0][0] - motion_val[-step][0];
1157  if(d < -3 || d > 3)
1158  return 1;
1159  d = motion_val[0][1] - motion_val[-step][1];
1160  if(d < -3 || d > 3)
1161  return 1;
1162  return 0;
1163 }
1164 
1166 {
1167  MpegEncContext *s = &r->s;
1168  int hmvmask = 0, vmvmask = 0, i, j;
1169  int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
1170  int16_t (*motion_val)[2] = &s->current_picture_ptr->motion_val[0][midx];
1171  for(j = 0; j < 16; j += 8){
1172  for(i = 0; i < 2; i++){
1173  if(is_mv_diff_gt_3(motion_val + i, 1))
1174  vmvmask |= 0x11 << (j + i*2);
1175  if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride))
1176  hmvmask |= 0x03 << (j + i*2);
1177  }
1178  motion_val += s->b8_stride;
1179  }
1180  if(s->first_slice_line)
1181  hmvmask &= ~0x000F;
1182  if(!s->mb_x)
1183  vmvmask &= ~0x1111;
1184  if(r->rv30){ //RV30 marks both subblocks on the edge for filtering
1185  vmvmask |= (vmvmask & 0x4444) >> 1;
1186  hmvmask |= (hmvmask & 0x0F00) >> 4;
1187  if(s->mb_x)
1188  r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3;
1189  if(!s->first_slice_line)
1190  r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12;
1191  }
1192  return hmvmask | vmvmask;
1193 }
1194 
1195 static int rv34_decode_inter_macroblock(RV34DecContext *r, int8_t *intra_types)
1196 {
1197  MpegEncContext *s = &r->s;
1198  GetBitContext *gb = &s->gb;
1199  uint8_t *dst = s->dest[0];
1200  int16_t *ptr = s->block[0];
1201  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1202  int cbp, cbp2;
1203  int q_dc, q_ac, has_ac;
1204  int i, j;
1205  int dist;
1206 
1207  // Calculate which neighbours are available. Maybe it's worth optimizing too.
1208  memset(r->avail_cache, 0, sizeof(r->avail_cache));
1209  fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
1210  dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
1211  if(s->mb_x && dist)
1212  r->avail_cache[5] =
1213  r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
1214  if(dist >= s->mb_width)
1215  r->avail_cache[2] =
1216  r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
1217  if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
1218  r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
1219  if(s->mb_x && dist > s->mb_width)
1220  r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
1221 
1222  s->qscale = r->si.quant;
1223  cbp = cbp2 = rv34_decode_inter_mb_header(r, intra_types);
1224  r->cbp_luma [mb_pos] = cbp;
1225  r->cbp_chroma[mb_pos] = cbp >> 16;
1226  r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos];
1227  s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
1228 
1229  if(cbp == -1)
1230  return -1;
1231 
1232  if (IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
1233  if(r->is16) rv34_output_i16x16(r, intra_types, cbp);
1234  else rv34_output_intra(r, intra_types, cbp);
1235  return 0;
1236  }
1237 
1238  if(r->is16){
1239  // Only for RV34_MB_P_MIX16x16
1240  LOCAL_ALIGNED_16(int16_t, block16, [16]);
1241  memset(block16, 0, 16 * sizeof(*block16));
1242  q_dc = rv34_qscale_tab[ r->luma_dc_quant_p[s->qscale] ];
1243  q_ac = rv34_qscale_tab[s->qscale];
1244  if (rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac))
1245  r->rdsp.rv34_inv_transform(block16);
1246  else
1247  r->rdsp.rv34_inv_transform_dc(block16);
1248 
1249  q_ac = rv34_qscale_tab[s->qscale];
1250 
1251  for(j = 0; j < 4; j++){
1252  for(i = 0; i < 4; i++, cbp >>= 1){
1253  int dc = block16[i + j*4];
1254 
1255  if(cbp & 1){
1256  has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
1257  }else
1258  has_ac = 0;
1259 
1260  if(has_ac){
1261  ptr[0] = dc;
1262  r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
1263  }else
1264  r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
1265  }
1266 
1267  dst += 4*s->linesize;
1268  }
1269 
1270  r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
1271  }else{
1272  q_ac = rv34_qscale_tab[s->qscale];
1273 
1274  for(j = 0; j < 4; j++){
1275  for(i = 0; i < 4; i++, cbp >>= 1){
1276  if(!(cbp & 1)) continue;
1277 
1278  rv34_process_block(r, dst + 4*i, s->linesize,
1279  r->luma_vlc, 0, q_ac, q_ac);
1280  }
1281  dst += 4*s->linesize;
1282  }
1283  }
1284 
1285  q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
1286  q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
1287 
1288  for(j = 1; j < 3; j++){
1289  dst = s->dest[j];
1290  for(i = 0; i < 4; i++, cbp >>= 1){
1291  uint8_t *pdst;
1292  if(!(cbp & 1)) continue;
1293  pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
1294 
1295  rv34_process_block(r, pdst, s->uvlinesize,
1296  r->chroma_vlc, 1, q_dc, q_ac);
1297  }
1298  }
1299 
1300  return 0;
1301 }
1302 
1303 static int rv34_decode_intra_macroblock(RV34DecContext *r, int8_t *intra_types)
1304 {
1305  MpegEncContext *s = &r->s;
1306  int cbp, dist;
1307  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1308 
1309  // Calculate which neighbours are available. Maybe it's worth optimizing too.
1310  memset(r->avail_cache, 0, sizeof(r->avail_cache));
1311  fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
1312  dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
1313  if(s->mb_x && dist)
1314  r->avail_cache[5] =
1315  r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
1316  if(dist >= s->mb_width)
1317  r->avail_cache[2] =
1318  r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
1319  if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
1320  r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
1321  if(s->mb_x && dist > s->mb_width)
1322  r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
1323 
1324  s->qscale = r->si.quant;
1325  cbp = rv34_decode_intra_mb_header(r, intra_types);
1326  r->cbp_luma [mb_pos] = cbp;
1327  r->cbp_chroma[mb_pos] = cbp >> 16;
1328  r->deblock_coefs[mb_pos] = 0xFFFF;
1329  s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
1330 
1331  if(cbp == -1)
1332  return -1;
1333 
1334  if(r->is16){
1335  rv34_output_i16x16(r, intra_types, cbp);
1336  return 0;
1337  }
1338 
1339  rv34_output_intra(r, intra_types, cbp);
1340  return 0;
1341 }
1342 
1344 {
1345  int bits;
1346  if(s->mb_y >= s->mb_height)
1347  return 1;
1348  if(!s->mb_num_left)
1349  return 1;
1350  if(r->s.mb_skip_run > 1)
1351  return 0;
1352  bits = get_bits_left(&s->gb);
1353  if(bits <= 0 || (bits < 8 && !show_bits(&s->gb, bits)))
1354  return 1;
1355  return 0;
1356 }
1357 
1358 
1360 {
1361  av_freep(&r->intra_types_hist);
1362  r->intra_types = NULL;
1363  av_freep(&r->tmp_b_block_base);
1364  av_freep(&r->mb_type);
1365  av_freep(&r->cbp_luma);
1366  av_freep(&r->cbp_chroma);
1367  av_freep(&r->deblock_coefs);
1368 }
1369 
1370 
1372 {
1373  r->intra_types_stride = r->s.mb_width * 4 + 4;
1374 
1375  r->cbp_chroma = av_mallocz(r->s.mb_stride * r->s.mb_height *
1376  sizeof(*r->cbp_chroma));
1377  r->cbp_luma = av_mallocz(r->s.mb_stride * r->s.mb_height *
1378  sizeof(*r->cbp_luma));
1379  r->deblock_coefs = av_mallocz(r->s.mb_stride * r->s.mb_height *
1380  sizeof(*r->deblock_coefs));
1381  r->intra_types_hist = av_malloc(r->intra_types_stride * 4 * 2 *
1382  sizeof(*r->intra_types_hist));
1383  r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height *
1384  sizeof(*r->mb_type));
1385 
1386  if (!(r->cbp_chroma && r->cbp_luma && r->deblock_coefs &&
1387  r->intra_types_hist && r->mb_type)) {
1388  r->s.context_reinit = 1;
1390  return AVERROR(ENOMEM);
1391  }
1392 
1393  r->intra_types = r->intra_types_hist + r->intra_types_stride * 4;
1394 
1395  return 0;
1396 }
1397 
1398 
1400 {
1402  return rv34_decoder_alloc(r);
1403 }
1404 
1405 
1406 static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size)
1407 {
1408  MpegEncContext *s = &r->s;
1409  GetBitContext *gb = &s->gb;
1410  int mb_pos, slice_type;
1411  int res;
1412 
1413  init_get_bits(&r->s.gb, buf, buf_size*8);
1414  res = r->parse_slice_header(r, gb, &r->si);
1415  if(res < 0){
1416  av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
1417  return -1;
1418  }
1419 
1420  slice_type = r->si.type ? r->si.type : AV_PICTURE_TYPE_I;
1421  if (slice_type != s->pict_type) {
1422  av_log(s->avctx, AV_LOG_ERROR, "Slice type mismatch\n");
1423  return AVERROR_INVALIDDATA;
1424  }
1425  if (s->width != r->si.width || s->height != r->si.height) {
1426  av_log(s->avctx, AV_LOG_ERROR, "Size mismatch\n");
1427  return AVERROR_INVALIDDATA;
1428  }
1429 
1430  r->si.end = end;
1431  s->qscale = r->si.quant;
1432  s->mb_num_left = r->si.end - r->si.start;
1433  r->s.mb_skip_run = 0;
1434 
1435  mb_pos = s->mb_x + s->mb_y * s->mb_width;
1436  if(r->si.start != mb_pos){
1437  av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
1438  s->mb_x = r->si.start % s->mb_width;
1439  s->mb_y = r->si.start / s->mb_width;
1440  }
1441  memset(r->intra_types_hist, -1, r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
1442  s->first_slice_line = 1;
1443  s->resync_mb_x = s->mb_x;
1444  s->resync_mb_y = s->mb_y;
1445 
1447  while(!check_slice_end(r, s)) {
1449 
1450  if(r->si.type)
1451  res = rv34_decode_inter_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
1452  else
1453  res = rv34_decode_intra_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
1454  if(res < 0){
1455  ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_ERROR);
1456  return -1;
1457  }
1458  if (++s->mb_x == s->mb_width) {
1459  s->mb_x = 0;
1460  s->mb_y++;
1462 
1463  memmove(r->intra_types_hist, r->intra_types, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
1464  memset(r->intra_types, -1, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
1465 
1466  if(r->loop_filter && s->mb_y >= 2)
1467  r->loop_filter(r, s->mb_y - 2);
1468 
1469  if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
1470  ff_thread_report_progress(&s->current_picture_ptr->tf,
1471  s->mb_y - 2, 0);
1472 
1473  }
1474  if(s->mb_x == s->resync_mb_x)
1475  s->first_slice_line=0;
1476  s->mb_num_left--;
1477  }
1478  ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_END);
1479 
1480  return s->mb_y == s->mb_height;
1481 }
1482 
1483 /** @} */ // reconstruction group end
1484 
1485 /**
1486  * Initialize decoder.
1487  */
1489 {
1490  static AVOnce init_static_once = AV_ONCE_INIT;
1491  RV34DecContext *r = avctx->priv_data;
1492  MpegEncContext *s = &r->s;
1493  int ret;
1494 
1495  ff_mpv_decode_init(s, avctx);
1496  s->out_format = FMT_H263;
1497 
1498  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
1499  avctx->has_b_frames = 1;
1500  s->low_delay = 0;
1501 
1503  if ((ret = ff_mpv_common_init(s)) < 0)
1504  return ret;
1505 
1506  ff_h264_pred_init(&r->h, AV_CODEC_ID_RV40, 8, 1);
1507 
1508 #if CONFIG_RV30_DECODER
1509  if (avctx->codec_id == AV_CODEC_ID_RV30)
1510  ff_rv30dsp_init(&r->rdsp);
1511 #endif
1512 #if CONFIG_RV40_DECODER
1513  if (avctx->codec_id == AV_CODEC_ID_RV40)
1514  ff_rv40dsp_init(&r->rdsp);
1515 #endif
1516 
1517  if ((ret = rv34_decoder_alloc(r)) < 0) {
1518  ff_mpv_common_end(&r->s);
1519  return ret;
1520  }
1521 
1522  ff_thread_once(&init_static_once, rv34_init_tables);
1523 
1524  return 0;
1525 }
1526 
1528 {
1529  RV34DecContext *r = dst->priv_data, *r1 = src->priv_data;
1530  MpegEncContext * const s = &r->s, * const s1 = &r1->s;
1531  int err;
1532 
1533  if (dst == src || !s1->context_initialized)
1534  return 0;
1535 
1536  if (s->height != s1->height || s->width != s1->width || s->context_reinit) {
1537  s->height = s1->height;
1538  s->width = s1->width;
1539  if ((err = ff_mpv_common_frame_size_change(s)) < 0)
1540  return err;
1541  if ((err = rv34_decoder_realloc(r)) < 0)
1542  return err;
1543  }
1544 
1545  r->cur_pts = r1->cur_pts;
1546  r->last_pts = r1->last_pts;
1547  r->next_pts = r1->next_pts;
1548 
1549  memset(&r->si, 0, sizeof(r->si));
1550 
1551  // Do no call ff_mpeg_update_thread_context on a partially initialized
1552  // decoder context.
1553  if (!s1->context_initialized)
1554  return 0;
1555 
1556  return ff_mpeg_update_thread_context(dst, src);
1557 }
1558 
1559 static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n, int slice_count, int buf_size)
1560 {
1561  if (n < slice_count) {
1562  if(avctx->slice_count) return avctx->slice_offset[n];
1563  else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
1564  } else
1565  return buf_size;
1566 }
1567 
1568 static int finish_frame(AVCodecContext *avctx, AVFrame *pict)
1569 {
1570  RV34DecContext *r = avctx->priv_data;
1571  MpegEncContext *s = &r->s;
1572  int got_picture = 0, ret;
1573 
1574  ff_er_frame_end(&s->er);
1576  s->mb_num_left = 0;
1577 
1578  if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
1579  ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0);
1580 
1581  if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
1582  if ((ret = av_frame_ref(pict, s->current_picture_ptr->f)) < 0)
1583  return ret;
1584  ff_print_debug_info(s, s->current_picture_ptr, pict);
1585  ff_mpv_export_qp_table(s, pict, s->current_picture_ptr, FF_QSCALE_TYPE_MPEG1);
1586  got_picture = 1;
1587  } else if (s->last_picture_ptr) {
1588  if ((ret = av_frame_ref(pict, s->last_picture_ptr->f)) < 0)
1589  return ret;
1590  ff_print_debug_info(s, s->last_picture_ptr, pict);
1591  ff_mpv_export_qp_table(s, pict, s->last_picture_ptr, FF_QSCALE_TYPE_MPEG1);
1592  got_picture = 1;
1593  }
1594 
1595  return got_picture;
1596 }
1597 
1598 static AVRational update_sar(int old_w, int old_h, AVRational sar, int new_w, int new_h)
1599 {
1600  // attempt to keep aspect during typical resolution switches
1601  if (!sar.num)
1602  sar = (AVRational){1, 1};
1603 
1604  sar = av_mul_q(sar, av_mul_q((AVRational){new_h, new_w}, (AVRational){old_w, old_h}));
1605  return sar;
1606 }
1607 
1609  void *data, int *got_picture_ptr,
1610  AVPacket *avpkt)
1611 {
1612  const uint8_t *buf = avpkt->data;
1613  int buf_size = avpkt->size;
1614  RV34DecContext *r = avctx->priv_data;
1615  MpegEncContext *s = &r->s;
1616  AVFrame *pict = data;
1617  SliceInfo si;
1618  int i, ret;
1619  int slice_count;
1620  const uint8_t *slices_hdr = NULL;
1621  int last = 0;
1622  int faulty_b = 0;
1623  int offset;
1624 
1625  /* no supplementary picture */
1626  if (buf_size == 0) {
1627  /* special case for last picture */
1628  if (s->low_delay==0 && s->next_picture_ptr) {
1629  if ((ret = av_frame_ref(pict, s->next_picture_ptr->f)) < 0)
1630  return ret;
1631  s->next_picture_ptr = NULL;
1632 
1633  *got_picture_ptr = 1;
1634  }
1635  return 0;
1636  }
1637 
1638  if(!avctx->slice_count){
1639  slice_count = (*buf++) + 1;
1640  slices_hdr = buf + 4;
1641  buf += 8 * slice_count;
1642  buf_size -= 1 + 8 * slice_count;
1643  }else
1644  slice_count = avctx->slice_count;
1645 
1646  offset = get_slice_offset(avctx, slices_hdr, 0, slice_count, buf_size);
1647  //parse first slice header to check whether this frame can be decoded
1648  if(offset < 0 || offset > buf_size){
1649  av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
1650  return AVERROR_INVALIDDATA;
1651  }
1652  init_get_bits(&s->gb, buf+offset, (buf_size-offset)*8);
1653  if(r->parse_slice_header(r, &r->s.gb, &si) < 0 || si.start){
1654  av_log(avctx, AV_LOG_ERROR, "First slice header is incorrect\n");
1655  return AVERROR_INVALIDDATA;
1656  }
1657  if ((!s->last_picture_ptr || !s->last_picture_ptr->f->data[0]) &&
1658  si.type == AV_PICTURE_TYPE_B) {
1659  av_log(avctx, AV_LOG_ERROR, "Invalid decoder state: B-frame without "
1660  "reference data.\n");
1661  faulty_b = 1;
1662  }
1663  if( (avctx->skip_frame >= AVDISCARD_NONREF && si.type==AV_PICTURE_TYPE_B)
1664  || (avctx->skip_frame >= AVDISCARD_NONKEY && si.type!=AV_PICTURE_TYPE_I)
1665  || avctx->skip_frame >= AVDISCARD_ALL)
1666  return avpkt->size;
1667 
1668  /* first slice */
1669  if (si.start == 0) {
1670  if (s->mb_num_left > 0 && s->current_picture_ptr) {
1671  av_log(avctx, AV_LOG_ERROR, "New frame but still %d MB left.\n",
1672  s->mb_num_left);
1673  if (!s->context_reinit)
1674  ff_er_frame_end(&s->er);
1676  }
1677 
1678  if (s->width != si.width || s->height != si.height || s->context_reinit) {
1679  int err;
1680 
1681  av_log(s->avctx, AV_LOG_WARNING, "Changing dimensions to %dx%d\n",
1682  si.width, si.height);
1683 
1684  if (av_image_check_size(si.width, si.height, 0, s->avctx))
1685  return AVERROR_INVALIDDATA;
1686 
1687  s->avctx->sample_aspect_ratio = update_sar(
1688  s->width, s->height, s->avctx->sample_aspect_ratio,
1689  si.width, si.height);
1690  s->width = si.width;
1691  s->height = si.height;
1692 
1693  err = ff_set_dimensions(s->avctx, s->width, s->height);
1694  if (err < 0)
1695  return err;
1696  if ((err = ff_mpv_common_frame_size_change(s)) < 0)
1697  return err;
1698  if ((err = rv34_decoder_realloc(r)) < 0)
1699  return err;
1700  }
1701  if (faulty_b)
1702  return AVERROR_INVALIDDATA;
1703  s->pict_type = si.type ? si.type : AV_PICTURE_TYPE_I;
1704  if (ff_mpv_frame_start(s, s->avctx) < 0)
1705  return -1;
1707  if (!r->tmp_b_block_base) {
1708  int i;
1709 
1710  r->tmp_b_block_base = av_malloc(s->linesize * 48);
1711  for (i = 0; i < 2; i++)
1712  r->tmp_b_block_y[i] = r->tmp_b_block_base
1713  + i * 16 * s->linesize;
1714  for (i = 0; i < 4; i++)
1715  r->tmp_b_block_uv[i] = r->tmp_b_block_base + 32 * s->linesize
1716  + (i >> 1) * 8 * s->uvlinesize
1717  + (i & 1) * 16;
1718  }
1719  r->cur_pts = si.pts;
1720  if (s->pict_type != AV_PICTURE_TYPE_B) {
1721  r->last_pts = r->next_pts;
1722  r->next_pts = r->cur_pts;
1723  } else {
1724  int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
1725  int dist0 = GET_PTS_DIFF(r->cur_pts, r->last_pts);
1726  int dist1 = GET_PTS_DIFF(r->next_pts, r->cur_pts);
1727 
1728  if(!refdist){
1729  r->mv_weight1 = r->mv_weight2 = r->weight1 = r->weight2 = 8192;
1730  r->scaled_weight = 0;
1731  }else{
1732  if (FFMAX(dist0, dist1) > refdist)
1733  av_log(avctx, AV_LOG_TRACE, "distance overflow\n");
1734 
1735  r->mv_weight1 = (dist0 << 14) / refdist;
1736  r->mv_weight2 = (dist1 << 14) / refdist;
1737  if((r->mv_weight1|r->mv_weight2) & 511){
1738  r->weight1 = r->mv_weight1;
1739  r->weight2 = r->mv_weight2;
1740  r->scaled_weight = 0;
1741  }else{
1742  r->weight1 = r->mv_weight1 >> 9;
1743  r->weight2 = r->mv_weight2 >> 9;
1744  r->scaled_weight = 1;
1745  }
1746  }
1747  }
1748  s->mb_x = s->mb_y = 0;
1749  ff_thread_finish_setup(s->avctx);
1750  } else if (s->context_reinit) {
1751  av_log(s->avctx, AV_LOG_ERROR, "Decoder needs full frames to "
1752  "reinitialize (start MB is %d).\n", si.start);
1753  return AVERROR_INVALIDDATA;
1754  } else if (HAVE_THREADS &&
1755  (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
1756  av_log(s->avctx, AV_LOG_ERROR, "Decoder needs full frames in frame "
1757  "multithreading mode (start MB is %d).\n", si.start);
1758  return AVERROR_INVALIDDATA;
1759  }
1760 
1761  for(i = 0; i < slice_count; i++){
1762  int offset = get_slice_offset(avctx, slices_hdr, i , slice_count, buf_size);
1763  int offset1 = get_slice_offset(avctx, slices_hdr, i+1, slice_count, buf_size);
1764  int size;
1765 
1766  if(offset < 0 || offset > offset1 || offset1 > buf_size){
1767  av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
1768  break;
1769  }
1770  size = offset1 - offset;
1771 
1772  r->si.end = s->mb_width * s->mb_height;
1773  s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
1774 
1775  if(i+1 < slice_count){
1776  int offset2 = get_slice_offset(avctx, slices_hdr, i+2, slice_count, buf_size);
1777  if (offset2 < offset1 || offset2 > buf_size) {
1778  av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
1779  break;
1780  }
1781  init_get_bits(&s->gb, buf+offset1, (buf_size-offset1)*8);
1782  if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
1783  size = offset2 - offset;
1784  }else
1785  r->si.end = si.start;
1786  }
1787  av_assert0 (size >= 0 && size <= buf_size - offset);
1788  last = rv34_decode_slice(r, r->si.end, buf + offset, size);
1789  if(last)
1790  break;
1791  }
1792 
1793  if (s->current_picture_ptr) {
1794  if (last) {
1795  if(r->loop_filter)
1796  r->loop_filter(r, s->mb_height - 1);
1797 
1798  ret = finish_frame(avctx, pict);
1799  if (ret < 0)
1800  return ret;
1801  *got_picture_ptr = ret;
1802  } else if (HAVE_THREADS &&
1803  (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
1804  av_log(avctx, AV_LOG_INFO, "marking unfished frame as finished\n");
1805  /* always mark the current frame as finished, frame-mt supports
1806  * only complete frames */
1807  ff_er_frame_end(&s->er);
1809  s->mb_num_left = 0;
1810  ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0);
1811  return AVERROR_INVALIDDATA;
1812  }
1813  }
1814 
1815  return avpkt->size;
1816 }
1817 
1819 {
1820  RV34DecContext *r = avctx->priv_data;
1821 
1822  ff_mpv_common_end(&r->s);
1824 
1825  return 0;
1826 }
static double val(void *priv, double ch)
Definition: aeval.c:76
#define U(x)
Definition: vp56_arith.h:37
#define A(x)
Definition: vp56_arith.h:28
#define av_cold
Definition: attributes.h:88
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> dc
uint8_t
simple assert() macros that are a bit more flexible than ISO C assert().
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
Libavcodec external API header.
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:1788
#define V
Definition: avdct.c:30
#define AV_RB32
Definition: intreadwrite.h:130
#define AV_RL32
Definition: intreadwrite.h:146
int ff_init_vlc_sparse(VLC *vlc_arg, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size, int flags)
Definition: bitstream.c:323
#define Y
Definition: boxblur.h:38
static const uint8_t shifts[2][12]
Definition: camellia.c:174
#define flags(name, subs,...)
Definition: cbs_av1.c:572
#define fc(width, name, range_min, range_max)
Definition: cbs_av1.c:562
#define s(width, name)
Definition: cbs_vp9.c:257
#define f(width, name)
Definition: cbs_vp9.c:255
#define FFMIN(a, b)
Definition: common.h:105
#define FFMAX(a, b)
Definition: common.h:103
#define HAVE_THREADS
Definition: config.h:278
#define NULL
Definition: coverity.c:32
#define SUINT
static float mul(float src0, float src1)
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
void ff_er_frame_end(ERContext *s)
#define ER_MB_END
#define ER_MB_ERROR
static void fill_rectangle(int x, int y, int w, int h)
Definition: ffplay.c:828
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:797
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:446
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:659
exp golomb vlc stuff
static int get_interleaved_se_golomb(GetBitContext *gb)
Definition: golomb.h:303
#define INVALID_VLC
Definition: golomb.h:38
@ AV_CODEC_ID_RV40
Definition: codec_id.h:118
@ AV_CODEC_ID_RV30
Definition: codec_id.h:117
@ AVDISCARD_ALL
discard all
Definition: avcodec.h:236
@ AVDISCARD_NONKEY
discard all frames except keyframes
Definition: avcodec.h:235
@ AVDISCARD_NONREF
discard all non reference
Definition: avcodec.h:232
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define AVERROR(e)
Definition: error.h:43
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:443
#define AV_LOG_TRACE
Extremely verbose debugging, useful for libav* development.
Definition: log.h:220
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
#define AV_LOG_INFO
Standard information.
Definition: log.h:205
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
AVRational av_mul_q(AVRational b, AVRational c)
Multiply two rationals.
Definition: rational.c:80
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:237
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
Definition: imgutils.c:317
@ AV_PICTURE_TYPE_I
Intra.
Definition: avutil.h:274
@ AV_PICTURE_TYPE_P
Predicted.
Definition: avutil.h:275
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
Definition: avutil.h:276
void(* h264_chroma_mc_func)(uint8_t *dst, uint8_t *src, ptrdiff_t srcStride, int h, int x, int y)
Definition: h264chroma.h:25
#define DIAG_DOWN_LEFT_PRED_RV40_NODOWN
Definition: h264pred.h:54
#define TOP_DC_PRED8x8
Definition: h264pred.h:75
#define HOR_UP_PRED_RV40_NODOWN
Definition: h264pred.h:55
#define HOR_PRED8x8
Definition: h264pred.h:69
#define VERT_PRED8x8
Definition: h264pred.h:70
#define DC_PRED8x8
Definition: h264pred.h:68
#define LEFT_DC_PRED8x8
Definition: h264pred.h:74
#define VERT_LEFT_PRED_RV40_NODOWN
Definition: h264pred.h:56
#define PLANE_PRED8x8
Definition: h264pred.h:71
#define DC_128_PRED8x8
Definition: h264pred.h:76
for(j=16;j >0;--j)
#define IS_INTRA(x, y)
#define B
Definition: huffyuvdsp.h:32
cl_device_type type
misc image utilities
int i
Definition: input.c:407
#define C
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
Definition: h264pred.c:411
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:84
#define FF_QSCALE_TYPE_MPEG1
Definition: internal.h:102
common internal API header
#define AVOnce
Definition: thread.h:172
static int ff_thread_once(char *control, void(*routine)(void))
Definition: thread.h:175
#define AV_ONCE_INIT
Definition: thread.h:173
static const uint16_t mask[17]
Definition: lzw.c:38
int stride
Definition: mace.c:144
#define mid_pred
Definition: mathops.h:97
#define LOCAL_ALIGNED_16(t, v,...)
Definition: mem_internal.h:130
void ff_mpeg_er_frame_start(MpegEncContext *s)
Definition: mpeg_er.c:46
#define MB_TYPE_8x8
Definition: mpegutils.h:57
#define MB_TYPE_8x16
Definition: mpegutils.h:56
#define MB_TYPE_SKIP
Definition: mpegutils.h:62
#define MB_TYPE_L1
Definition: mpegutils.h:68
#define IS_16X8(a)
Definition: mpegutils.h:87
#define IS_8X16(a)
Definition: mpegutils.h:88
#define MB_TYPE_INTRA
Definition: mpegutils.h:73
#define MB_TYPE_L0L1
Definition: mpegutils.h:69
#define MB_TYPE_DIRECT2
Definition: mpegutils.h:59
#define MB_TYPE_16x8
Definition: mpegutils.h:55
#define MB_TYPE_INTRA16x16
Definition: mpegutils.h:52
#define IS_8X8(a)
Definition: mpegutils.h:89
#define MB_TYPE_16x16
Definition: mpegutils.h:54
#define MB_TYPE_L0
Definition: mpegutils.h:67
#define IS_SKIP(a)
Definition: mpegutils.h:81
#define IS_INTRA16x16(a)
Definition: mpegutils.h:76
@ FMT_H263
Definition: mpegutils.h:126
int ff_mpv_frame_start(MpegEncContext *s, AVCodecContext *avctx)
generic function called after decoding the header and before a frame is decoded.
Definition: mpegvideo.c:1181
void ff_mpv_common_end(MpegEncContext *s)
Definition: mpegvideo.c:1111
void ff_mpv_frame_end(MpegEncContext *s)
Definition: mpegvideo.c:1405
av_cold int ff_mpv_common_init(MpegEncContext *s)
init common structure for both encoder and decoder.
Definition: mpegvideo.c:913
int ff_mpv_export_qp_table(MpegEncContext *s, AVFrame *f, Picture *p, int qp_type)
Definition: mpegvideo.c:1420
av_cold void ff_mpv_idct_init(MpegEncContext *s)
Definition: mpegvideo.c:331
void ff_print_debug_info(MpegEncContext *s, Picture *p, AVFrame *pict)
Definition: mpegvideo.c:1413
void ff_mpv_decode_init(MpegEncContext *s, AVCodecContext *avctx)
Initialize the given MpegEncContext for decoding.
Definition: mpegvideo.c:699
void ff_init_block_index(MpegEncContext *s)
Definition: mpegvideo.c:2267
int ff_mpeg_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: mpegvideo.c:524
int ff_mpv_common_frame_size_change(MpegEncContext *s)
Definition: mpegvideo.c:1055
mpegvideo header.
static void ff_update_block_index(MpegEncContext *s)
Definition: mpegvideo.h:750
const char data[16]
Definition: mxf.c:142
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
static const uint16_t table[]
Definition: prosumer.c:206
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
void ff_thread_finish_setup(AVCodecContext *avctx)
If the codec defines update_thread_context(), call this when they are ready for the next thread to st...
quarterpel DSP functions
void(* qpel_mc_func)(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
Definition: qpeldsp.h:65
useful rectangle filling function
#define s1
Definition: regdef.h:38
av_cold void ff_rv30dsp_init(RV34DSPContext *c)
Definition: rv30dsp.c:265
static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
Decode coded block pattern.
Definition: rv34.c:182
static av_cold void rv34_init_tables(void)
Initialize all tables.
Definition: rv34.c:127
static const int rv34_mb_type_to_lavc[12]
translation of RV30/40 macroblock types to lavc ones
Definition: rv34.c:57
static int rv34_decode_intra_mb_header(RV34DecContext *r, int8_t *intra_types)
Decode intra macroblock header and return CBP in case of success, -1 otherwise.
Definition: rv34.c:348
static int adjust_pred16(int itype, int up, int left)
Definition: rv34.c:994
static void rv34_decoder_free(RV34DecContext *r)
Definition: rv34.c:1359
static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t *buf, int buf_size)
Definition: rv34.c:1406
static AVRational update_sar(int old_w, int old_h, AVRational sar, int new_w, int new_h)
Definition: rv34.c:1598
static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
Definition: rv34.c:807
static const int chroma_coeffs[3]
Definition: rv34.c:643
static void rv4_weight(RV34DecContext *r)
Definition: rv34.c:785
static void rv34_pred_b_vector(int A[2], int B[2], int C[2], int A_avail, int B_avail, int C_avail, int *mx, int *my)
Predict motion vector for B-frame macroblock.
Definition: rv34.c:525
static void rv34_output_i16x16(RV34DecContext *r, int8_t *intra_types, int cbp)
Definition: rv34.c:1026
static int rv34_decoder_realloc(RV34DecContext *r)
Definition: rv34.c:1399
static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n, int slice_count, int buf_size)
Definition: rv34.c:1559
static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *syms, int *offset)
Generate VLC from codeword lengths.
Definition: rv34.c:92
static int rv34_decode_mv(RV34DecContext *r, int block_type)
Decode motion vector differences and perform motion vector reconstruction and motion compensation.
Definition: rv34.c:853
static RV34VLC * choose_vlc_set(int quant, int mod, int type)
Select VLC set for decoding from current quantizer, modifier and frame type.
Definition: rv34.c:336
static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
Perform 4x4 intra prediction.
Definition: rv34.c:967
static void decode_subblock3(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q_dc, int q_ac1, int q_ac2)
Definition: rv34.c:259
static int rv34_set_deblock_coef(RV34DecContext *r)
Definition: rv34.c:1165
static void decode_subblock(int16_t *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc, int q)
Decode 2x2 subblock of coefficients.
Definition: rv34.c:235
static int rv34_decode_intra_macroblock(RV34DecContext *r, int8_t *intra_types)
Definition: rv34.c:1303
static int calc_add_mv(RV34DecContext *r, int dir, int val)
Calculate motion vector component that should be added for direct blocks.
Definition: rv34.c:515
av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
Definition: rv34.c:1818
static void rv34_mc(RV34DecContext *r, const int block_type, const int xoff, const int yoff, int mv_off, const int width, const int height, int dir, const int thirdpel, int weighted, qpel_mc_func(*qpel_mc)[16], h264_chroma_mc_func(*chroma_mc))
generic motion compensation function
Definition: rv34.c:660
static void decode_subblock1(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q)
Decode a single coefficient.
Definition: rv34.c:253
static RV34VLC inter_vlcs[NUM_INTER_TABLES]
Definition: rv34.c:73
int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
Decode starting slice position.
Definition: rv34.c:324
static VLC_TYPE table_data[117592][2]
Definition: rv34.c:82
static void rv34_mc_1mv(RV34DecContext *r, const int block_type, const int xoff, const int yoff, int mv_off, const int width, const int height, int dir)
Definition: rv34.c:776
static void ZERO8x2(void *dst, int stride)
Definition: rv34.c:50
static void rv34_output_intra(RV34DecContext *r, int8_t *intra_types, int cbp)
Definition: rv34.c:1089
static const uint8_t avail_indexes[4]
availability index for subblocks
Definition: rv34.c:452
int ff_rv34_decode_frame(AVCodecContext *avctx, void *data, int *got_picture_ptr, AVPacket *avpkt)
Definition: rv34.c:1608
static const int ittrans16[4]
mapping of RV30/40 intra 16x16 prediction types to standard H.264 types
Definition: rv34.c:960
static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
Definition: rv34.c:1343
static int rv34_decode_block(int16_t *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc, int q_dc, int q_ac1, int q_ac2)
Decode coefficients for 4x4 block.
Definition: rv34.c:281
#define GET_PTS_DIFF(a, b)
Definition: rv34.c:510
static const uint8_t part_sizes_w[RV34_MB_TYPES]
macroblock partition width in 8x8 blocks
Definition: rv34.c:446
static void decode_coeff(int16_t *dst, int coef, int esc, GetBitContext *gb, VLC *vlc, int q)
Get one coefficient value from the bitstream and store it.
Definition: rv34.c:215
static int finish_frame(AVCodecContext *avctx, AVFrame *pict)
Definition: rv34.c:1568
static const uint8_t part_sizes_h[RV34_MB_TYPES]
macroblock partition height in 8x8 blocks
Definition: rv34.c:449
static const int num_mvs[RV34_MB_TYPES]
number of motion vectors in each macroblock type
Definition: rv34.c:847
static int rv34_decoder_alloc(RV34DecContext *r)
Definition: rv34.c:1371
static int rv34_decode_inter_mb_header(RV34DecContext *r, int8_t *intra_types)
Decode inter macroblock header and return CBP in case of success, -1 otherwise.
Definition: rv34.c:383
static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
motion vector prediction - RV3 version
Definition: rv34.c:597
static RV34VLC intra_vlcs[NUM_INTRA_TABLES]
Definition: rv34.c:73
static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
motion vector prediction for B-frames
Definition: rv34.c:545
static void rv34_mc_2mv_skip(RV34DecContext *r)
Definition: rv34.c:826
av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
Initialize decoder.
Definition: rv34.c:1488
int ff_rv34_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: rv34.c:1527
static int rv34_decode_inter_macroblock(RV34DecContext *r, int8_t *intra_types)
Definition: rv34.c:1195
static int is_mv_diff_gt_3(int16_t(*motion_val)[2], int step)
Definition: rv34.c:1153
static void rv34_process_block(RV34DecContext *r, uint8_t *pdst, int stride, int fc, int sc, int q_dc, int q_ac)
Definition: rv34.c:1010
static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
motion vector prediction
Definition: rv34.c:461
static const int ittrans[9]
mapping of RV30/40 intra prediction types to standard H.264 types
Definition: rv34.c:954
RV30 and RV40 decoder common data declarations.
@ RV34_MB_TYPE_INTRA
Intra macroblock.
Definition: rv34.h:45
@ RV34_MB_P_MIX16x16
P-frame macroblock with DCs in a separate 4x4 block, one motion vector.
Definition: rv34.h:56
@ RV34_MB_P_16x8
P-frame macroblock, 16x8 motion compensation partitions.
Definition: rv34.h:53
@ RV34_MB_B_BIDIR
Bidirectionally predicted B-frame macroblock, two motion vectors.
Definition: rv34.h:55
@ RV34_MB_B_BACKWARD
B-frame macroblock, backward prediction.
Definition: rv34.h:50
@ RV34_MB_B_DIRECT
Bidirectionally predicted B-frame macroblock, no motion vectors.
Definition: rv34.h:52
@ RV34_MB_P_16x16
P-frame macroblock, one motion frame.
Definition: rv34.h:47
@ RV34_MB_TYPES
Definition: rv34.h:57
@ RV34_MB_P_8x16
P-frame macroblock, 8x16 motion compensation partitions.
Definition: rv34.h:54
@ RV34_MB_P_8x8
P-frame macroblock, 8x8 motion compensation partitions.
Definition: rv34.h:48
@ RV34_MB_B_FORWARD
B-frame macroblock, forward prediction.
Definition: rv34.h:49
@ RV34_MB_TYPE_INTRA16x16
Intra macroblock with DCs in a separate 4x4 block.
Definition: rv34.h:46
@ RV34_MB_SKIP
Skipped block.
Definition: rv34.h:51
#define MB_TYPE_SEPARATE_DC
Definition: rv34.h:38
miscellaneous RV30/40 tables
static const uint8_t modulo_three_table[108]
precalculated results of division by three and modulo three for values 0-107
Definition: rv34data.h:53
static const uint8_t rv34_chroma_quant[2][32]
quantizer values used for AC and DC coefficients in chroma blocks
Definition: rv34data.h:74
static const uint8_t rv34_quant_to_vlc_set[2][32]
tables used to translate a quantizer value into a VLC set for decoding The first table is used for in...
Definition: rv34data.h:95
static const uint16_t rv34_qscale_tab[32]
This table is used for dequantizing.
Definition: rv34data.h:84
static const uint8_t rv34_cbp_code[16]
values used to reconstruct coded block pattern
Definition: rv34data.h:42
static const uint8_t rv34_count_ones[16]
number of ones in nibble minus one
Definition: rv34data.h:35
static const uint8_t rv34_mb_bits_sizes[6]
bits needed to code the slice offset for the given size
Definition: rv34data.h:111
static const uint16_t rv34_mb_max_sizes[6]
maximum number of macroblocks for each of the possible slice offset sizes
Definition: rv34data.h:106
void ff_rv40dsp_init(RV34DSPContext *c)
Definition: rv40dsp.c:620
RV30/40 VLC tables.
#define MAX_VLC_SIZE
Definition: rv34vlc.h:40
static const uint8_t rv34_intra_coeff[NUM_INTRA_TABLES][COEFF_VLC_SIZE]
Definition: rv34vlc.h:2281
static const uint8_t rv34_inter_cbppat[NUM_INTER_TABLES][CBPPAT_VLC_SIZE]
Definition: rv34vlc.h:2305
#define NUM_INTRA_TABLES
Definition: rv34vlc.h:32
static const uint8_t rv34_table_intra_thirdpat[NUM_INTRA_TABLES][2][OTHERBLK_VLC_SIZE]
Definition: rv34vlc.h:2177
#define OTHERBLK_VLC_SIZE
Definition: rv34vlc.h:38
#define FIRSTBLK_VLC_SIZE
Definition: rv34vlc.h:37
static const uint8_t rv34_inter_cbp[NUM_INTER_TABLES][4][CBP_VLC_SIZE]
Definition: rv34vlc.h:2890
static const uint8_t rv34_table_inter_secondpat[NUM_INTER_TABLES][2][OTHERBLK_VLC_SIZE]
Definition: rv34vlc.h:3737
static const uint8_t rv34_table_intra_cbp[NUM_INTRA_TABLES][8][CBP_VLC_SIZE]
Definition: rv34vlc.h:886
static const uint8_t rv34_table_intra_secondpat[NUM_INTRA_TABLES][2][OTHERBLK_VLC_SIZE]
Definition: rv34vlc.h:2074
#define COEFF_VLC_SIZE
Definition: rv34vlc.h:39
static const uint8_t rv34_table_intra_firstpat[NUM_INTRA_TABLES][4][FIRSTBLK_VLC_SIZE]
Definition: rv34vlc.h:940
#define CBPPAT_VLC_SIZE
Definition: rv34vlc.h:35
#define CBP_VLC_SIZE
Definition: rv34vlc.h:36
static const uint8_t rv34_table_inter_firstpat[NUM_INTER_TABLES][2][FIRSTBLK_VLC_SIZE]
Definition: rv34vlc.h:2936
static const uint8_t rv34_inter_coeff[NUM_INTER_TABLES][COEFF_VLC_SIZE]
Definition: rv34vlc.h:4024
static const uint8_t rv34_table_intra_cbppat[NUM_INTRA_TABLES][2][CBPPAT_VLC_SIZE]
Definition: rv34vlc.h:42
#define NUM_INTER_TABLES
Definition: rv34vlc.h:33
static const uint8_t rv34_table_inter_thirdpat[NUM_INTER_TABLES][2][OTHERBLK_VLC_SIZE]
Definition: rv34vlc.h:3880
#define FF_ARRAY_ELEMS(a)
const uint8_t * code
Definition: spdifenc.c:413
main external API structure.
Definition: avcodec.h:536
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:746
int slice_count
slice count
Definition: avcodec.h:890
int has_b_frames
Size of the frame reordering buffer in the decoder.
Definition: avcodec.h:826
enum AVCodecID codec_id
Definition: avcodec.h:546
int * slice_offset
slice offsets in the frame in bytes
Definition: avcodec.h:906
void * priv_data
Definition: avcodec.h:563
enum AVDiscard skip_frame
Skip decoding for selected frames.
Definition: avcodec.h:2010
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
This structure stores compressed data.
Definition: packet.h:346
int size
Definition: packet.h:370
uint8_t * data
Definition: packet.h:369
Rational number (pair of numerator and denominator).
Definition: rational.h:58
int num
Numerator.
Definition: rational.h:59
MpegEncContext.
Definition: mpegvideo.h:81
Picture.
Definition: mpegpicture.h:45
int16_t(*[2] motion_val)[2]
Definition: mpegpicture.h:53
uint32_t * mb_type
types and macros are defined in mpegutils.h
Definition: mpegpicture.h:56
decoder context
Definition: rv34.h:86
VLC tables used by the decoder.
Definition: rv34.h:65
VLC cbppattern[2]
VLCs used for pattern of coded block patterns decoding.
Definition: rv34.h:66
VLC cbp[2][4]
VLCs used for coded block patterns decoding.
Definition: rv34.h:67
VLC second_pattern[2]
VLCs used for decoding coefficients in the subblocks 2 and 3.
Definition: rv34.h:69
VLC third_pattern[2]
VLCs used for decoding coefficients in the last subblock.
Definition: rv34.h:70
VLC first_pattern[4]
VLCs used for decoding coefficients in the first subblock.
Definition: rv34.h:68
VLC coefficient
VLCs used for decoding big coefficients.
Definition: rv34.h:71
essential slice information
Definition: rv34.h:75
int pts
frame timestamp
Definition: rv34.h:82
int start
Definition: rv34.h:79
int width
coded width
Definition: rv34.h:80
int height
coded height
Definition: rv34.h:81
int type
slice type (intra, inter)
Definition: rv34.h:76
Definition: vlc.h:26
int table_size
Definition: vlc.h:29
int table_allocated
Definition: vlc.h:29
int bits
Definition: vlc.h:27
VLC_TYPE(* table)[2]
code, bits
Definition: vlc.h:28
#define av_freep(p)
#define av_malloc(s)
#define av_log(a,...)
#define src
Definition: vp8dsp.c:255
#define height
#define width
int size
#define chroma_mc(a)
Definition: vc1dsp.c:783
const char * r
Definition: vf_curves.c:116
static const double coeff[2][5]
Definition: vf_owdenoise.c:73
static const uint8_t offset[127][2]
Definition: vf_spp.c:107
static int mod(int a, int b)
Modulo operation with only positive remainders.
Definition: vf_v360.c:747
#define INIT_VLC_STATIC_OVERLONG
Definition: vlc.h:96
#define VLC_TYPE
Definition: vlc.h:24
const uint8_t * quant
uint8_t bits
Definition: vp3data.h:141
@ VERT_RIGHT_PRED
Definition: vp9.h:51
@ TOP_DC_PRED
Definition: vp9.h:57
@ VERT_LEFT_PRED
Definition: vp9.h:53
@ HOR_UP_PRED
Definition: vp9.h:54
@ LEFT_DC_PRED
Definition: vp9.h:56
@ DIAG_DOWN_LEFT_PRED
Definition: vp9.h:49
@ DIAG_DOWN_RIGHT_PRED
Definition: vp9.h:50
@ DC_128_PRED
Definition: vp9.h:58
@ VERT_PRED
Definition: vp9.h:46
@ HOR_DOWN_PRED
Definition: vp9.h:52
@ HOR_PRED
Definition: vp9.h:47
@ DC_PRED
Definition: vp9.h:48