FFmpeg  4.4.6
dnxhdenc.c
Go to the documentation of this file.
1 /*
2  * VC3/DNxHD encoder
3  * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
4  * Copyright (c) 2011 MirriAd Ltd
5  *
6  * VC-3 encoder funded by the British Broadcasting Corporation
7  * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
8  *
9  * This file is part of FFmpeg.
10  *
11  * FFmpeg is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2.1 of the License, or (at your option) any later version.
15  *
16  * FFmpeg is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with FFmpeg; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24  */
25 
26 #include "libavutil/attributes.h"
27 #include "libavutil/internal.h"
28 #include "libavutil/mem_internal.h"
29 #include "libavutil/opt.h"
30 
31 #include "avcodec.h"
32 #include "blockdsp.h"
33 #include "fdctdsp.h"
34 #include "internal.h"
35 #include "mpegvideo.h"
36 #include "pixblockdsp.h"
37 #include "packet_internal.h"
38 #include "profiles.h"
39 #include "dnxhdenc.h"
40 
41 // The largest value that will not lead to overflow for 10-bit samples.
42 #define DNX10BIT_QMAT_SHIFT 18
43 #define RC_VARIANCE 1 // use variance or ssd for fast rc
44 #define LAMBDA_FRAC_BITS 10
45 
46 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
47 static const AVOption options[] = {
48  { "nitris_compat", "encode with Avid Nitris compatibility",
49  offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
50  { "ibias", "intra quant bias",
51  offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
52  { .i64 = 0 }, INT_MIN, INT_MAX, VE },
53  { "profile", NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT,
54  { .i64 = FF_PROFILE_DNXHD },
56  { "dnxhd", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHD },
57  0, 0, VE, "profile" },
58  { "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_444 },
59  0, 0, VE, "profile" },
60  { "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQX },
61  0, 0, VE, "profile" },
62  { "dnxhr_hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQ },
63  0, 0, VE, "profile" },
64  { "dnxhr_sq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_SQ },
65  0, 0, VE, "profile" },
66  { "dnxhr_lb", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_LB },
67  0, 0, VE, "profile" },
68  { NULL }
69 };
70 
71 static const AVClass dnxhd_class = {
72  .class_name = "dnxhd",
73  .item_name = av_default_item_name,
74  .option = options,
75  .version = LIBAVUTIL_VERSION_INT,
76 };
77 
79  const uint8_t *pixels,
80  ptrdiff_t line_size)
81 {
82  int i;
83  for (i = 0; i < 4; i++) {
84  block[0] = pixels[0];
85  block[1] = pixels[1];
86  block[2] = pixels[2];
87  block[3] = pixels[3];
88  block[4] = pixels[4];
89  block[5] = pixels[5];
90  block[6] = pixels[6];
91  block[7] = pixels[7];
92  pixels += line_size;
93  block += 8;
94  }
95  memcpy(block, block - 8, sizeof(*block) * 8);
96  memcpy(block + 8, block - 16, sizeof(*block) * 8);
97  memcpy(block + 16, block - 24, sizeof(*block) * 8);
98  memcpy(block + 24, block - 32, sizeof(*block) * 8);
99 }
100 
101 static av_always_inline
103  const uint8_t *pixels,
104  ptrdiff_t line_size)
105 {
106  memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
107  memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
108  memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
109  memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
110  memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
111  memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
112  memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
113  memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
114 }
115 
117  int n, int qscale, int *overflow)
118 {
119  int i, j, level, last_non_zero, start_i;
120  const int *qmat;
121  const uint8_t *scantable= ctx->intra_scantable.scantable;
122  int bias;
123  int max = 0;
124  unsigned int threshold1, threshold2;
125 
126  ctx->fdsp.fdct(block);
127 
128  block[0] = (block[0] + 2) >> 2;
129  start_i = 1;
130  last_non_zero = 0;
131  qmat = n < 4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
132  bias= ctx->intra_quant_bias * (1 << (16 - 8));
133  threshold1 = (1 << 16) - bias - 1;
134  threshold2 = (threshold1 << 1);
135 
136  for (i = 63; i >= start_i; i--) {
137  j = scantable[i];
138  level = block[j] * qmat[j];
139 
140  if (((unsigned)(level + threshold1)) > threshold2) {
141  last_non_zero = i;
142  break;
143  } else{
144  block[j]=0;
145  }
146  }
147 
148  for (i = start_i; i <= last_non_zero; i++) {
149  j = scantable[i];
150  level = block[j] * qmat[j];
151 
152  if (((unsigned)(level + threshold1)) > threshold2) {
153  if (level > 0) {
154  level = (bias + level) >> 16;
155  block[j] = level;
156  } else{
157  level = (bias - level) >> 16;
158  block[j] = -level;
159  }
160  max |= level;
161  } else {
162  block[j] = 0;
163  }
164  }
165  *overflow = ctx->max_qcoeff < max; //overflow might have happened
166 
167  /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
168  if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
169  ff_block_permute(block, ctx->idsp.idct_permutation,
170  scantable, last_non_zero);
171 
172  return last_non_zero;
173 }
174 
176  int n, int qscale, int *overflow)
177 {
178  const uint8_t *scantable= ctx->intra_scantable.scantable;
179  const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
180  int last_non_zero = 0;
181  int i;
182 
183  ctx->fdsp.fdct(block);
184 
185  // Divide by 4 with rounding, to compensate scaling of DCT coefficients
186  block[0] = (block[0] + 2) >> 2;
187 
188  for (i = 1; i < 64; ++i) {
189  int j = scantable[i];
190  int sign = FF_SIGNBIT(block[j]);
191  int level = (block[j] ^ sign) - sign;
192  level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
193  block[j] = (level ^ sign) - sign;
194  if (level)
195  last_non_zero = i;
196  }
197 
198  /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
199  if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
200  ff_block_permute(block, ctx->idsp.idct_permutation,
201  scantable, last_non_zero);
202 
203  return last_non_zero;
204 }
205 
207 {
208  int i, j, level, run;
209  int max_level = 1 << (ctx->bit_depth + 2);
210 
211  if (!FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_codes, max_level * 4) ||
212  !FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_bits, max_level * 4) ||
213  !(ctx->run_codes = av_mallocz(63 * 2)) ||
214  !(ctx->run_bits = av_mallocz(63)))
215  return AVERROR(ENOMEM);
216  ctx->vlc_codes = ctx->orig_vlc_codes + max_level * 2;
217  ctx->vlc_bits = ctx->orig_vlc_bits + max_level * 2;
218  for (level = -max_level; level < max_level; level++) {
219  for (run = 0; run < 2; run++) {
220  int index = level * (1 << 1) | run;
221  int sign, offset = 0, alevel = level;
222 
223  MASK_ABS(sign, alevel);
224  if (alevel > 64) {
225  offset = (alevel - 1) >> 6;
226  alevel -= offset << 6;
227  }
228  for (j = 0; j < 257; j++) {
229  if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
230  (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
231  (!run || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
232  av_assert1(!ctx->vlc_codes[index]);
233  if (alevel) {
234  ctx->vlc_codes[index] =
235  (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
236  ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
237  } else {
238  ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
239  ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
240  }
241  break;
242  }
243  }
244  av_assert0(!alevel || j < 257);
245  if (offset) {
246  ctx->vlc_codes[index] =
247  (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
248  ctx->vlc_bits[index] += ctx->cid_table->index_bits;
249  }
250  }
251  }
252  for (i = 0; i < 62; i++) {
253  int run = ctx->cid_table->run[i];
254  av_assert0(run < 63);
255  ctx->run_codes[run] = ctx->cid_table->run_codes[i];
256  ctx->run_bits[run] = ctx->cid_table->run_bits[i];
257  }
258  return 0;
259 }
260 
261 static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
262 {
263  // init first elem to 1 to avoid div by 0 in convert_matrix
264  uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
265  int qscale, i;
266  const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
267  const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
268 
269  if (!FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l, ctx->m.avctx->qmax + 1) ||
270  !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c, ctx->m.avctx->qmax + 1) ||
271  !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l16, ctx->m.avctx->qmax + 1) ||
272  !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c16, ctx->m.avctx->qmax + 1))
273  return AVERROR(ENOMEM);
274 
275  if (ctx->bit_depth == 8) {
276  for (i = 1; i < 64; i++) {
277  int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
278  weight_matrix[j] = ctx->cid_table->luma_weight[i];
279  }
280  ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
281  weight_matrix, ctx->intra_quant_bias, 1,
282  ctx->m.avctx->qmax, 1);
283  for (i = 1; i < 64; i++) {
284  int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
285  weight_matrix[j] = ctx->cid_table->chroma_weight[i];
286  }
287  ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
288  weight_matrix, ctx->intra_quant_bias, 1,
289  ctx->m.avctx->qmax, 1);
290 
291  for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
292  for (i = 0; i < 64; i++) {
293  ctx->qmatrix_l[qscale][i] <<= 2;
294  ctx->qmatrix_c[qscale][i] <<= 2;
295  ctx->qmatrix_l16[qscale][0][i] <<= 2;
296  ctx->qmatrix_l16[qscale][1][i] <<= 2;
297  ctx->qmatrix_c16[qscale][0][i] <<= 2;
298  ctx->qmatrix_c16[qscale][1][i] <<= 2;
299  }
300  }
301  } else {
302  // 10-bit
303  for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
304  for (i = 1; i < 64; i++) {
305  int j = ff_zigzag_direct[i];
306 
307  /* The quantization formula from the VC-3 standard is:
308  * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
309  * (qscale * weight_table[i]))
310  * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
311  * The s factor compensates scaling of DCT coefficients done by
312  * the DCT routines, and therefore is not present in standard.
313  * It's 8 for 8-bit samples and 4 for 10-bit ones.
314  * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
315  * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
316  * (qscale * weight_table[i])
317  * For 10-bit samples, p / s == 2 */
318  ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
319  (qscale * luma_weight_table[i]);
320  ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
321  (qscale * chroma_weight_table[i]);
322  }
323  }
324  }
325 
326  ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
327  ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
328  ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
329  ctx->m.q_intra_matrix = ctx->qmatrix_l;
330 
331  return 0;
332 }
333 
335 {
336  if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_rc, (ctx->m.avctx->qmax + 1) * ctx->m.mb_num))
337  return AVERROR(ENOMEM);
338 
339  if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) {
340  if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp, ctx->m.mb_num) ||
341  !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp_tmp, ctx->m.mb_num))
342  return AVERROR(ENOMEM);
343  }
344  ctx->frame_bits = (ctx->coding_unit_size -
345  ctx->data_offset - 4 - ctx->min_padding) * 8;
346  ctx->qscale = 1;
347  ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
348  return 0;
349 }
350 
352 {
353  DNXHDEncContext *ctx = avctx->priv_data;
354  int i, ret;
355 
356  switch (avctx->pix_fmt) {
357  case AV_PIX_FMT_YUV422P:
358  ctx->bit_depth = 8;
359  break;
362  case AV_PIX_FMT_GBRP10:
363  ctx->bit_depth = 10;
364  break;
365  default:
366  av_log(avctx, AV_LOG_ERROR,
367  "pixel format is incompatible with DNxHD\n");
368  return AVERROR(EINVAL);
369  }
370 
371  if ((ctx->profile == FF_PROFILE_DNXHR_444 && (avctx->pix_fmt != AV_PIX_FMT_YUV444P10 &&
372  avctx->pix_fmt != AV_PIX_FMT_GBRP10)) ||
373  (ctx->profile != FF_PROFILE_DNXHR_444 && (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 ||
374  avctx->pix_fmt == AV_PIX_FMT_GBRP10))) {
375  av_log(avctx, AV_LOG_ERROR,
376  "pixel format is incompatible with DNxHD profile\n");
377  return AVERROR(EINVAL);
378  }
379 
380  if (ctx->profile == FF_PROFILE_DNXHR_HQX && avctx->pix_fmt != AV_PIX_FMT_YUV422P10) {
381  av_log(avctx, AV_LOG_ERROR,
382  "pixel format is incompatible with DNxHR HQX profile\n");
383  return AVERROR(EINVAL);
384  }
385 
386  if ((ctx->profile == FF_PROFILE_DNXHR_LB ||
387  ctx->profile == FF_PROFILE_DNXHR_SQ ||
388  ctx->profile == FF_PROFILE_DNXHR_HQ) && avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
389  av_log(avctx, AV_LOG_ERROR,
390  "pixel format is incompatible with DNxHR LB/SQ/HQ profile\n");
391  return AVERROR(EINVAL);
392  }
393 
394  ctx->is_444 = ctx->profile == FF_PROFILE_DNXHR_444;
395  avctx->profile = ctx->profile;
396  ctx->cid = ff_dnxhd_find_cid(avctx, ctx->bit_depth);
397  if (!ctx->cid) {
398  av_log(avctx, AV_LOG_ERROR,
399  "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
401  return AVERROR(EINVAL);
402  }
403  av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
404 
405  if (ctx->cid >= 1270 && ctx->cid <= 1274)
406  avctx->codec_tag = MKTAG('A','V','d','h');
407 
408  if (avctx->width < 256 || avctx->height < 120) {
409  av_log(avctx, AV_LOG_ERROR,
410  "Input dimensions too small, input must be at least 256x120\n");
411  return AVERROR(EINVAL);
412  }
413 
414  ctx->cid_table = ff_dnxhd_get_cid_table(ctx->cid);
415  av_assert0(ctx->cid_table);
416 
417  ctx->m.avctx = avctx;
418  ctx->m.mb_intra = 1;
419  ctx->m.h263_aic = 1;
420 
421  avctx->bits_per_raw_sample = ctx->bit_depth;
422 
423  ff_blockdsp_init(&ctx->bdsp, avctx);
424  ff_fdctdsp_init(&ctx->m.fdsp, avctx);
425  ff_mpv_idct_init(&ctx->m);
426  ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
427  ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
428  ff_dct_encode_init(&ctx->m);
429 
430  if (ctx->profile != FF_PROFILE_DNXHD)
431  ff_videodsp_init(&ctx->m.vdsp, ctx->bit_depth);
432 
433  if (!ctx->m.dct_quantize)
434  ctx->m.dct_quantize = ff_dct_quantize_c;
435 
436  if (ctx->is_444 || ctx->profile == FF_PROFILE_DNXHR_HQX) {
437  ctx->m.dct_quantize = dnxhd_10bit_dct_quantize_444;
438  ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
439  ctx->block_width_l2 = 4;
440  } else if (ctx->bit_depth == 10) {
441  ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
442  ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
443  ctx->block_width_l2 = 4;
444  } else {
445  ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
446  ctx->block_width_l2 = 3;
447  }
448 
449  if (ARCH_X86)
451 
452  ctx->m.mb_height = (avctx->height + 15) / 16;
453  ctx->m.mb_width = (avctx->width + 15) / 16;
454 
455  if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
456  ctx->interlaced = 1;
457  ctx->m.mb_height /= 2;
458  }
459 
460  if (ctx->interlaced && ctx->profile != FF_PROFILE_DNXHD) {
461  av_log(avctx, AV_LOG_ERROR,
462  "Interlaced encoding is not supported for DNxHR profiles.\n");
463  return AVERROR(EINVAL);
464  }
465 
466  ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
467 
468  if (ctx->cid_table->frame_size == DNXHD_VARIABLE) {
469  ctx->frame_size = avpriv_dnxhd_get_hr_frame_size(ctx->cid,
470  avctx->width, avctx->height);
471  av_assert0(ctx->frame_size >= 0);
472  ctx->coding_unit_size = ctx->frame_size;
473  } else {
474  ctx->frame_size = ctx->cid_table->frame_size;
475  ctx->coding_unit_size = ctx->cid_table->coding_unit_size;
476  }
477 
478  if (ctx->m.mb_height > 68)
479  ctx->data_offset = 0x170 + (ctx->m.mb_height << 2);
480  else
481  ctx->data_offset = 0x280;
482 
483  // XXX tune lbias/cbias
484  if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
485  return ret;
486 
487  /* Avid Nitris hardware decoder requires a minimum amount of padding
488  * in the coding unit payload */
489  if (ctx->nitris_compat)
490  ctx->min_padding = 1600;
491 
492  if ((ret = dnxhd_init_vlc(ctx)) < 0)
493  return ret;
494  if ((ret = dnxhd_init_rc(ctx)) < 0)
495  return ret;
496 
497  if (!FF_ALLOCZ_TYPED_ARRAY(ctx->slice_size, ctx->m.mb_height) ||
498  !FF_ALLOCZ_TYPED_ARRAY(ctx->slice_offs, ctx->m.mb_height) ||
499  !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_bits, ctx->m.mb_num) ||
500  !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_qscale, ctx->m.mb_num))
501  return AVERROR(ENOMEM);
502 #if FF_API_CODED_FRAME
504  avctx->coded_frame->key_frame = 1;
507 #endif
508 
509  if (avctx->active_thread_type == FF_THREAD_SLICE) {
510  if (avctx->thread_count > MAX_THREADS) {
511  av_log(avctx, AV_LOG_ERROR, "too many threads\n");
512  return AVERROR(EINVAL);
513  }
514  }
515 
516  if (avctx->qmax <= 1) {
517  av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
518  return AVERROR(EINVAL);
519  }
520 
521  ctx->thread[0] = ctx;
522  if (avctx->active_thread_type == FF_THREAD_SLICE) {
523  for (i = 1; i < avctx->thread_count; i++) {
524  ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
525  if (!ctx->thread[i])
526  return AVERROR(ENOMEM);
527  memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
528  }
529  }
530 
531  return 0;
532 }
533 
534 static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
535 {
536  DNXHDEncContext *ctx = avctx->priv_data;
537 
538  memset(buf, 0, ctx->data_offset);
539 
540  // * write prefix */
541  AV_WB16(buf + 0x02, ctx->data_offset);
542  if (ctx->cid >= 1270 && ctx->cid <= 1274)
543  buf[4] = 0x03;
544  else
545  buf[4] = 0x01;
546 
547  buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
548  buf[6] = 0x80; // crc flag off
549  buf[7] = 0xa0; // reserved
550  AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
551  AV_WB16(buf + 0x1a, avctx->width); // SPL
552  AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
553 
554  buf[0x21] = ctx->bit_depth == 10 ? 0x58 : 0x38;
555  buf[0x22] = 0x88 + (ctx->interlaced << 2);
556  AV_WB32(buf + 0x28, ctx->cid); // CID
557  buf[0x2c] = (!ctx->interlaced << 7) | (ctx->is_444 << 6) | (avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
558 
559  buf[0x5f] = 0x01; // UDL
560 
561  buf[0x167] = 0x02; // reserved
562  AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
563  AV_WB16(buf + 0x16c, ctx->m.mb_height); // Ns
564  buf[0x16f] = 0x10; // reserved
565 
566  ctx->msip = buf + 0x170;
567  return 0;
568 }
569 
571 {
572  int nbits;
573  if (diff < 0) {
574  nbits = av_log2_16bit(-2 * diff);
575  diff--;
576  } else {
577  nbits = av_log2_16bit(2 * diff);
578  }
579  put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
580  (ctx->cid_table->dc_codes[nbits] << nbits) +
581  av_mod_uintp2(diff, nbits));
582 }
583 
584 static av_always_inline
586  int last_index, int n)
587 {
588  int last_non_zero = 0;
589  int slevel, i, j;
590 
591  dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
592  ctx->m.last_dc[n] = block[0];
593 
594  for (i = 1; i <= last_index; i++) {
595  j = ctx->m.intra_scantable.permutated[i];
596  slevel = block[j];
597  if (slevel) {
598  int run_level = i - last_non_zero - 1;
599  int rlevel = slevel * (1 << 1) | !!run_level;
600  put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
601  if (run_level)
602  put_bits(&ctx->m.pb, ctx->run_bits[run_level],
603  ctx->run_codes[run_level]);
604  last_non_zero = i;
605  }
606  }
607  put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
608 }
609 
610 static av_always_inline
612  int qscale, int last_index)
613 {
614  const uint8_t *weight_matrix;
615  int level;
616  int i;
617 
618  if (ctx->is_444) {
619  weight_matrix = ((n % 6) < 2) ? ctx->cid_table->luma_weight
620  : ctx->cid_table->chroma_weight;
621  } else {
622  weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
623  : ctx->cid_table->luma_weight;
624  }
625 
626  for (i = 1; i <= last_index; i++) {
627  int j = ctx->m.intra_scantable.permutated[i];
628  level = block[j];
629  if (level) {
630  if (level < 0) {
631  level = (1 - 2 * level) * qscale * weight_matrix[i];
632  if (ctx->bit_depth == 10) {
633  if (weight_matrix[i] != 8)
634  level += 8;
635  level >>= 4;
636  } else {
637  if (weight_matrix[i] != 32)
638  level += 32;
639  level >>= 6;
640  }
641  level = -level;
642  } else {
643  level = (2 * level + 1) * qscale * weight_matrix[i];
644  if (ctx->bit_depth == 10) {
645  if (weight_matrix[i] != 8)
646  level += 8;
647  level >>= 4;
648  } else {
649  if (weight_matrix[i] != 32)
650  level += 32;
651  level >>= 6;
652  }
653  }
654  block[j] = level;
655  }
656  }
657 }
658 
659 static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
660 {
661  int score = 0;
662  int i;
663  for (i = 0; i < 64; i++)
664  score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
665  return score;
666 }
667 
668 static av_always_inline
669 int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
670 {
671  int last_non_zero = 0;
672  int bits = 0;
673  int i, j, level;
674  for (i = 1; i <= last_index; i++) {
675  j = ctx->m.intra_scantable.permutated[i];
676  level = block[j];
677  if (level) {
678  int run_level = i - last_non_zero - 1;
679  bits += ctx->vlc_bits[level * (1 << 1) |
680  !!run_level] + ctx->run_bits[run_level];
681  last_non_zero = i;
682  }
683  }
684  return bits;
685 }
686 
687 static av_always_inline
688 void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
689 {
690  const int bs = ctx->block_width_l2;
691  const int bw = 1 << bs;
692  int dct_y_offset = ctx->dct_y_offset;
693  int dct_uv_offset = ctx->dct_uv_offset;
694  int linesize = ctx->m.linesize;
695  int uvlinesize = ctx->m.uvlinesize;
696  const uint8_t *ptr_y = ctx->thread[0]->src[0] +
697  ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
698  const uint8_t *ptr_u = ctx->thread[0]->src[1] +
699  ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
700  const uint8_t *ptr_v = ctx->thread[0]->src[2] +
701  ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
702  PixblockDSPContext *pdsp = &ctx->m.pdsp;
703  VideoDSPContext *vdsp = &ctx->m.vdsp;
704 
705  if (ctx->bit_depth != 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
706  (mb_y << 4) + 16 > ctx->m.avctx->height)) {
707  int y_w = ctx->m.avctx->width - (mb_x << 4);
708  int y_h = ctx->m.avctx->height - (mb_y << 4);
709  int uv_w = (y_w + 1) / 2;
710  int uv_h = y_h;
711  linesize = 16;
712  uvlinesize = 8;
713 
714  vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
715  linesize, ctx->m.linesize,
716  linesize, 16,
717  0, 0, y_w, y_h);
718  vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
719  uvlinesize, ctx->m.uvlinesize,
720  uvlinesize, 16,
721  0, 0, uv_w, uv_h);
722  vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
723  uvlinesize, ctx->m.uvlinesize,
724  uvlinesize, 16,
725  0, 0, uv_w, uv_h);
726 
727  dct_y_offset = bw * linesize;
728  dct_uv_offset = bw * uvlinesize;
729  ptr_y = &ctx->edge_buf_y[0];
730  ptr_u = &ctx->edge_buf_uv[0][0];
731  ptr_v = &ctx->edge_buf_uv[1][0];
732  } else if (ctx->bit_depth == 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
733  (mb_y << 4) + 16 > ctx->m.avctx->height)) {
734  int y_w = ctx->m.avctx->width - (mb_x << 4);
735  int y_h = ctx->m.avctx->height - (mb_y << 4);
736  int uv_w = ctx->is_444 ? y_w : (y_w + 1) / 2;
737  int uv_h = y_h;
738  linesize = 32;
739  uvlinesize = 16 + 16 * ctx->is_444;
740 
741  vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
742  linesize, ctx->m.linesize,
743  linesize / 2, 16,
744  0, 0, y_w, y_h);
745  vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
746  uvlinesize, ctx->m.uvlinesize,
747  uvlinesize / 2, 16,
748  0, 0, uv_w, uv_h);
749  vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
750  uvlinesize, ctx->m.uvlinesize,
751  uvlinesize / 2, 16,
752  0, 0, uv_w, uv_h);
753 
754  dct_y_offset = bw * linesize / 2;
755  dct_uv_offset = bw * uvlinesize / 2;
756  ptr_y = &ctx->edge_buf_y[0];
757  ptr_u = &ctx->edge_buf_uv[0][0];
758  ptr_v = &ctx->edge_buf_uv[1][0];
759  }
760 
761  if (!ctx->is_444) {
762  pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
763  pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
764  pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
765  pdsp->get_pixels(ctx->blocks[3], ptr_v, uvlinesize);
766 
767  if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
768  if (ctx->interlaced) {
769  ctx->get_pixels_8x4_sym(ctx->blocks[4],
770  ptr_y + dct_y_offset,
771  linesize);
772  ctx->get_pixels_8x4_sym(ctx->blocks[5],
773  ptr_y + dct_y_offset + bw,
774  linesize);
775  ctx->get_pixels_8x4_sym(ctx->blocks[6],
776  ptr_u + dct_uv_offset,
777  uvlinesize);
778  ctx->get_pixels_8x4_sym(ctx->blocks[7],
779  ptr_v + dct_uv_offset,
780  uvlinesize);
781  } else {
782  ctx->bdsp.clear_block(ctx->blocks[4]);
783  ctx->bdsp.clear_block(ctx->blocks[5]);
784  ctx->bdsp.clear_block(ctx->blocks[6]);
785  ctx->bdsp.clear_block(ctx->blocks[7]);
786  }
787  } else {
788  pdsp->get_pixels(ctx->blocks[4],
789  ptr_y + dct_y_offset, linesize);
790  pdsp->get_pixels(ctx->blocks[5],
791  ptr_y + dct_y_offset + bw, linesize);
792  pdsp->get_pixels(ctx->blocks[6],
793  ptr_u + dct_uv_offset, uvlinesize);
794  pdsp->get_pixels(ctx->blocks[7],
795  ptr_v + dct_uv_offset, uvlinesize);
796  }
797  } else {
798  pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
799  pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
800  pdsp->get_pixels(ctx->blocks[6], ptr_y + dct_y_offset, linesize);
801  pdsp->get_pixels(ctx->blocks[7], ptr_y + dct_y_offset + bw, linesize);
802 
803  pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
804  pdsp->get_pixels(ctx->blocks[3], ptr_u + bw, uvlinesize);
805  pdsp->get_pixels(ctx->blocks[8], ptr_u + dct_uv_offset, uvlinesize);
806  pdsp->get_pixels(ctx->blocks[9], ptr_u + dct_uv_offset + bw, uvlinesize);
807 
808  pdsp->get_pixels(ctx->blocks[4], ptr_v, uvlinesize);
809  pdsp->get_pixels(ctx->blocks[5], ptr_v + bw, uvlinesize);
810  pdsp->get_pixels(ctx->blocks[10], ptr_v + dct_uv_offset, uvlinesize);
811  pdsp->get_pixels(ctx->blocks[11], ptr_v + dct_uv_offset + bw, uvlinesize);
812  }
813 }
814 
815 static av_always_inline
817 {
818  int x;
819 
820  if (ctx->is_444) {
821  x = (i >> 1) % 3;
822  } else {
823  const static uint8_t component[8]={0,0,1,2,0,0,1,2};
824  x = component[i];
825  }
826  return x;
827 }
828 
829 static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
830  int jobnr, int threadnr)
831 {
832  DNXHDEncContext *ctx = avctx->priv_data;
833  int mb_y = jobnr, mb_x;
834  int qscale = ctx->qscale;
835  LOCAL_ALIGNED_16(int16_t, block, [64]);
836  ctx = ctx->thread[threadnr];
837 
838  ctx->m.last_dc[0] =
839  ctx->m.last_dc[1] =
840  ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
841 
842  for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
843  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
844  int ssd = 0;
845  int ac_bits = 0;
846  int dc_bits = 0;
847  int i;
848 
849  dnxhd_get_blocks(ctx, mb_x, mb_y);
850 
851  for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
852  int16_t *src_block = ctx->blocks[i];
853  int overflow, nbits, diff, last_index;
854  int n = dnxhd_switch_matrix(ctx, i);
855 
856  memcpy(block, src_block, 64 * sizeof(*block));
857  last_index = ctx->m.dct_quantize(&ctx->m, block,
858  ctx->is_444 ? 4 * (n > 0): 4 & (2*i),
859  qscale, &overflow);
860  ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
861 
862  diff = block[0] - ctx->m.last_dc[n];
863  if (diff < 0)
864  nbits = av_log2_16bit(-2 * diff);
865  else
866  nbits = av_log2_16bit(2 * diff);
867 
868  av_assert1(nbits < ctx->bit_depth + 4);
869  dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
870 
871  ctx->m.last_dc[n] = block[0];
872 
873  if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
874  dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
875  ctx->m.idsp.idct(block);
876  ssd += dnxhd_ssd_block(block, src_block);
877  }
878  }
879  ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd = ssd;
880  ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 +
881  (1 + ctx->is_444) * 8 * ctx->vlc_bits[0];
882  }
883  return 0;
884 }
885 
886 static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
887  int jobnr, int threadnr)
888 {
889  DNXHDEncContext *ctx = avctx->priv_data;
890  int mb_y = jobnr, mb_x;
891  ctx = ctx->thread[threadnr];
892  init_put_bits(&ctx->m.pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr],
893  ctx->slice_size[jobnr]);
894 
895  ctx->m.last_dc[0] =
896  ctx->m.last_dc[1] =
897  ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
898  for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
899  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
900  int qscale = ctx->mb_qscale[mb];
901  int i;
902 
903  put_bits(&ctx->m.pb, 11, qscale);
904  put_bits(&ctx->m.pb, 1, avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
905 
906  dnxhd_get_blocks(ctx, mb_x, mb_y);
907 
908  for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
909  int16_t *block = ctx->blocks[i];
910  int overflow, n = dnxhd_switch_matrix(ctx, i);
911  int last_index = ctx->m.dct_quantize(&ctx->m, block,
912  ctx->is_444 ? (((i >> 1) % 3) < 1 ? 0 : 4): 4 & (2*i),
913  qscale, &overflow);
914 
915  dnxhd_encode_block(ctx, block, last_index, n);
916  }
917  }
918  if (put_bits_count(&ctx->m.pb) & 31)
919  put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
920  flush_put_bits(&ctx->m.pb);
921  return 0;
922 }
923 
925 {
926  int mb_y, mb_x;
927  int offset = 0;
928  for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
929  int thread_size;
930  ctx->slice_offs[mb_y] = offset;
931  ctx->slice_size[mb_y] = 0;
932  for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
933  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
934  ctx->slice_size[mb_y] += ctx->mb_bits[mb];
935  }
936  ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
937  ctx->slice_size[mb_y] >>= 3;
938  thread_size = ctx->slice_size[mb_y];
939  offset += thread_size;
940  }
941 }
942 
943 static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
944  int jobnr, int threadnr)
945 {
946  DNXHDEncContext *ctx = avctx->priv_data;
947  int mb_y = jobnr, mb_x, x, y;
948  int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
949  ((avctx->height >> ctx->interlaced) & 0xF);
950 
951  ctx = ctx->thread[threadnr];
952  if (ctx->bit_depth == 8) {
953  uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
954  for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
955  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
956  int sum;
957  int varc;
958 
959  if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) {
960  sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
961  varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
962  } else {
963  int bw = FFMIN(avctx->width - 16 * mb_x, 16);
964  int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
965  sum = varc = 0;
966  for (y = 0; y < bh; y++) {
967  for (x = 0; x < bw; x++) {
968  uint8_t val = pix[x + y * ctx->m.linesize];
969  sum += val;
970  varc += val * val;
971  }
972  }
973  }
974  varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
975 
976  ctx->mb_cmp[mb].value = varc;
977  ctx->mb_cmp[mb].mb = mb;
978  }
979  } else { // 10-bit
980  const int linesize = ctx->m.linesize >> 1;
981  for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
982  uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
983  ((mb_y << 4) * linesize) + (mb_x << 4);
984  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
985  int sum = 0;
986  int sqsum = 0;
987  int bw = FFMIN(avctx->width - 16 * mb_x, 16);
988  int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
989  int mean, sqmean;
990  int i, j;
991  // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
992  for (i = 0; i < bh; ++i) {
993  for (j = 0; j < bw; ++j) {
994  // Turn 16-bit pixels into 10-bit ones.
995  const int sample = (unsigned) pix[j] >> 6;
996  sum += sample;
997  sqsum += sample * sample;
998  // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
999  }
1000  pix += linesize;
1001  }
1002  mean = sum >> 8; // 16*16 == 2^8
1003  sqmean = sqsum >> 8;
1004  ctx->mb_cmp[mb].value = sqmean - mean * mean;
1005  ctx->mb_cmp[mb].mb = mb;
1006  }
1007  }
1008  return 0;
1009 }
1010 
1012 {
1013  int lambda, up_step, down_step;
1014  int last_lower = INT_MAX, last_higher = 0;
1015  int x, y, q;
1016 
1017  for (q = 1; q < avctx->qmax; q++) {
1018  ctx->qscale = q;
1019  avctx->execute2(avctx, dnxhd_calc_bits_thread,
1020  NULL, NULL, ctx->m.mb_height);
1021  }
1022  up_step = down_step = 2 << LAMBDA_FRAC_BITS;
1023  lambda = ctx->lambda;
1024 
1025  for (;;) {
1026  int bits = 0;
1027  int end = 0;
1028  if (lambda == last_higher) {
1029  lambda++;
1030  end = 1; // need to set final qscales/bits
1031  }
1032  for (y = 0; y < ctx->m.mb_height; y++) {
1033  for (x = 0; x < ctx->m.mb_width; x++) {
1034  unsigned min = UINT_MAX;
1035  int qscale = 1;
1036  int mb = y * ctx->m.mb_width + x;
1037  int rc = 0;
1038  for (q = 1; q < avctx->qmax; q++) {
1039  int i = (q*ctx->m.mb_num) + mb;
1040  unsigned score = ctx->mb_rc[i].bits * lambda +
1041  ((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS);
1042  if (score < min) {
1043  min = score;
1044  qscale = q;
1045  rc = i;
1046  }
1047  }
1048  bits += ctx->mb_rc[rc].bits;
1049  ctx->mb_qscale[mb] = qscale;
1050  ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
1051  }
1052  bits = (bits + 31) & ~31; // padding
1053  if (bits > ctx->frame_bits)
1054  break;
1055  }
1056  if (end) {
1057  if (bits > ctx->frame_bits)
1058  return AVERROR(EINVAL);
1059  break;
1060  }
1061  if (bits < ctx->frame_bits) {
1062  last_lower = FFMIN(lambda, last_lower);
1063  if (last_higher != 0)
1064  lambda = (lambda+last_higher)>>1;
1065  else
1066  lambda -= down_step;
1067  down_step = FFMIN((int64_t)down_step*5, INT_MAX);
1068  up_step = 1<<LAMBDA_FRAC_BITS;
1069  lambda = FFMAX(1, lambda);
1070  if (lambda == last_lower)
1071  break;
1072  } else {
1073  last_higher = FFMAX(lambda, last_higher);
1074  if (last_lower != INT_MAX)
1075  lambda = (lambda+last_lower)>>1;
1076  else if ((int64_t)lambda + up_step > INT_MAX)
1077  return AVERROR(EINVAL);
1078  else
1079  lambda += up_step;
1080  up_step = FFMIN((int64_t)up_step*5, INT_MAX);
1081  down_step = 1<<LAMBDA_FRAC_BITS;
1082  }
1083  }
1084  ctx->lambda = lambda;
1085  return 0;
1086 }
1087 
1089 {
1090  int bits = 0;
1091  int up_step = 1;
1092  int down_step = 1;
1093  int last_higher = 0;
1094  int last_lower = INT_MAX;
1095  int qscale;
1096  int x, y;
1097 
1098  qscale = ctx->qscale;
1099  for (;;) {
1100  bits = 0;
1101  ctx->qscale = qscale;
1102  // XXX avoid recalculating bits
1103  ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
1104  NULL, NULL, ctx->m.mb_height);
1105  for (y = 0; y < ctx->m.mb_height; y++) {
1106  for (x = 0; x < ctx->m.mb_width; x++)
1107  bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits;
1108  bits = (bits+31)&~31; // padding
1109  if (bits > ctx->frame_bits)
1110  break;
1111  }
1112  if (bits < ctx->frame_bits) {
1113  if (qscale == 1)
1114  return 1;
1115  if (last_higher == qscale - 1) {
1116  qscale = last_higher;
1117  break;
1118  }
1119  last_lower = FFMIN(qscale, last_lower);
1120  if (last_higher != 0)
1121  qscale = (qscale + last_higher) >> 1;
1122  else
1123  qscale -= down_step++;
1124  if (qscale < 1)
1125  qscale = 1;
1126  up_step = 1;
1127  } else {
1128  if (last_lower == qscale + 1)
1129  break;
1130  last_higher = FFMAX(qscale, last_higher);
1131  if (last_lower != INT_MAX)
1132  qscale = (qscale + last_lower) >> 1;
1133  else
1134  qscale += up_step++;
1135  down_step = 1;
1136  if (qscale >= ctx->m.avctx->qmax)
1137  return AVERROR(EINVAL);
1138  }
1139  }
1140  ctx->qscale = qscale;
1141  return 0;
1142 }
1143 
1144 #define BUCKET_BITS 8
1145 #define RADIX_PASSES 4
1146 #define NBUCKETS (1 << BUCKET_BITS)
1147 
1148 static inline int get_bucket(int value, int shift)
1149 {
1150  value >>= shift;
1151  value &= NBUCKETS - 1;
1152  return NBUCKETS - 1 - value;
1153 }
1154 
1155 static void radix_count(const RCCMPEntry *data, int size,
1156  int buckets[RADIX_PASSES][NBUCKETS])
1157 {
1158  int i, j;
1159  memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
1160  for (i = 0; i < size; i++) {
1161  int v = data[i].value;
1162  for (j = 0; j < RADIX_PASSES; j++) {
1163  buckets[j][get_bucket(v, 0)]++;
1164  v >>= BUCKET_BITS;
1165  }
1166  av_assert1(!v);
1167  }
1168  for (j = 0; j < RADIX_PASSES; j++) {
1169  int offset = size;
1170  for (i = NBUCKETS - 1; i >= 0; i--)
1171  buckets[j][i] = offset -= buckets[j][i];
1172  av_assert1(!buckets[j][0]);
1173  }
1174 }
1175 
1176 static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
1177  int size, int buckets[NBUCKETS], int pass)
1178 {
1179  int shift = pass * BUCKET_BITS;
1180  int i;
1181  for (i = 0; i < size; i++) {
1182  int v = get_bucket(data[i].value, shift);
1183  int pos = buckets[v]++;
1184  dst[pos] = data[i];
1185  }
1186 }
1187 
1189 {
1190  int buckets[RADIX_PASSES][NBUCKETS];
1191  radix_count(data, size, buckets);
1192  radix_sort_pass(tmp, data, size, buckets[0], 0);
1193  radix_sort_pass(data, tmp, size, buckets[1], 1);
1194  if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
1195  radix_sort_pass(tmp, data, size, buckets[2], 2);
1196  radix_sort_pass(data, tmp, size, buckets[3], 3);
1197  }
1198 }
1199 
1201 {
1202  int max_bits = 0;
1203  int ret, x, y;
1204  if ((ret = dnxhd_find_qscale(ctx)) < 0)
1205  return ret;
1206  for (y = 0; y < ctx->m.mb_height; y++) {
1207  for (x = 0; x < ctx->m.mb_width; x++) {
1208  int mb = y * ctx->m.mb_width + x;
1209  int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1210  int delta_bits;
1211  ctx->mb_qscale[mb] = ctx->qscale;
1212  ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
1213  max_bits += ctx->mb_rc[rc].bits;
1214  if (!RC_VARIANCE) {
1215  delta_bits = ctx->mb_rc[rc].bits -
1216  ctx->mb_rc[rc + ctx->m.mb_num].bits;
1217  ctx->mb_cmp[mb].mb = mb;
1218  ctx->mb_cmp[mb].value =
1219  delta_bits ? ((ctx->mb_rc[rc].ssd -
1220  ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) /
1221  delta_bits
1222  : INT_MIN; // avoid increasing qscale
1223  }
1224  }
1225  max_bits += 31; // worst padding
1226  }
1227  if (!ret) {
1228  if (RC_VARIANCE)
1229  avctx->execute2(avctx, dnxhd_mb_var_thread,
1230  NULL, NULL, ctx->m.mb_height);
1231  radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.mb_num);
1232  for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
1233  int mb = ctx->mb_cmp[x].mb;
1234  int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1235  max_bits -= ctx->mb_rc[rc].bits -
1236  ctx->mb_rc[rc + ctx->m.mb_num].bits;
1237  ctx->mb_qscale[mb] = ctx->qscale + 1;
1238  ctx->mb_bits[mb] = ctx->mb_rc[rc + ctx->m.mb_num].bits;
1239  }
1240  }
1241  return 0;
1242 }
1243 
1245 {
1246  int i;
1247 
1248  for (i = 0; i < ctx->m.avctx->thread_count; i++) {
1249  ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
1250  ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
1251  ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
1252  ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
1253  }
1254 
1255 #if FF_API_CODED_FRAME
1257  ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
1259 #endif
1260  ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
1261 }
1262 
1264  const AVFrame *frame, int *got_packet)
1265 {
1266  DNXHDEncContext *ctx = avctx->priv_data;
1267  int first_field = 1;
1268  int offset, i, ret;
1269  uint8_t *buf;
1270 
1271  if ((ret = ff_alloc_packet2(avctx, pkt, ctx->frame_size, 0)) < 0)
1272  return ret;
1273  buf = pkt->data;
1274 
1276 
1277 encode_coding_unit:
1278  for (i = 0; i < 3; i++) {
1279  ctx->src[i] = frame->data[i];
1280  if (ctx->interlaced && ctx->cur_field)
1281  ctx->src[i] += frame->linesize[i];
1282  }
1283 
1284  dnxhd_write_header(avctx, buf);
1285 
1286  if (avctx->mb_decision == FF_MB_DECISION_RD)
1287  ret = dnxhd_encode_rdo(avctx, ctx);
1288  else
1289  ret = dnxhd_encode_fast(avctx, ctx);
1290  if (ret < 0) {
1291  av_log(avctx, AV_LOG_ERROR,
1292  "picture could not fit ratecontrol constraints, increase qmax\n");
1293  return ret;
1294  }
1295 
1297 
1298  offset = 0;
1299  for (i = 0; i < ctx->m.mb_height; i++) {
1300  AV_WB32(ctx->msip + i * 4, offset);
1301  offset += ctx->slice_size[i];
1302  av_assert1(!(ctx->slice_size[i] & 3));
1303  }
1304 
1305  avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
1306 
1307  av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size);
1308  memset(buf + ctx->data_offset + offset, 0,
1309  ctx->coding_unit_size - 4 - offset - ctx->data_offset);
1310 
1311  AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF
1312 
1313  if (ctx->interlaced && first_field) {
1314  first_field = 0;
1315  ctx->cur_field ^= 1;
1316  buf += ctx->coding_unit_size;
1317  goto encode_coding_unit;
1318  }
1319 
1320 #if FF_API_CODED_FRAME
1322  avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
1324 #endif
1325 
1327 
1329  *got_packet = 1;
1330  return 0;
1331 }
1332 
1334 {
1335  DNXHDEncContext *ctx = avctx->priv_data;
1336  int i;
1337 
1338  av_freep(&ctx->orig_vlc_codes);
1339  av_freep(&ctx->orig_vlc_bits);
1340  av_freep(&ctx->run_codes);
1341  av_freep(&ctx->run_bits);
1342 
1343  av_freep(&ctx->mb_bits);
1344  av_freep(&ctx->mb_qscale);
1345  av_freep(&ctx->mb_rc);
1346  av_freep(&ctx->mb_cmp);
1347  av_freep(&ctx->mb_cmp_tmp);
1348  av_freep(&ctx->slice_size);
1349  av_freep(&ctx->slice_offs);
1350 
1351  av_freep(&ctx->qmatrix_c);
1352  av_freep(&ctx->qmatrix_l);
1353  av_freep(&ctx->qmatrix_c16);
1354  av_freep(&ctx->qmatrix_l16);
1355 
1356  if (ctx->thread[1]) {
1357  for (i = 1; i < avctx->thread_count; i++)
1358  av_freep(&ctx->thread[i]);
1359  }
1360 
1361  return 0;
1362 }
1363 
1364 static const AVCodecDefault dnxhd_defaults[] = {
1365  { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
1366  { NULL },
1367 };
1368 
1370  .name = "dnxhd",
1371  .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
1372  .type = AVMEDIA_TYPE_VIDEO,
1373  .id = AV_CODEC_ID_DNXHD,
1374  .priv_data_size = sizeof(DNXHDEncContext),
1376  .encode2 = dnxhd_encode_picture,
1377  .close = dnxhd_encode_end,
1379  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
1380  .pix_fmts = (const enum AVPixelFormat[]) {
1386  },
1387  .priv_class = &dnxhd_class,
1388  .defaults = dnxhd_defaults,
1390 };
static double val(void *priv, double ch)
Definition: aeval.c:76
static void bit_depth(AudioStatsContext *s, uint64_t mask, uint64_t imask, AVRational *depth)
Definition: af_astats.c:254
Macro definitions for various function/variable attributes.
#define av_always_inline
Definition: attributes.h:45
#define av_cold
Definition: attributes.h:88
uint8_t
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
Libavcodec external API header.
#define FF_PROFILE_DNXHR_444
Definition: avcodec.h:1882
#define FF_PROFILE_DNXHR_LB
Definition: avcodec.h:1878
#define FF_MB_DECISION_RD
rate distortion
Definition: avcodec.h:1027
#define FF_PROFILE_DNXHR_HQ
Definition: avcodec.h:1880
#define FF_PROFILE_DNXHD
Definition: avcodec.h:1877
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:1789
#define FF_PROFILE_DNXHR_SQ
Definition: avcodec.h:1879
#define FF_PROFILE_DNXHR_HQX
Definition: avcodec.h:1881
int ff_side_data_set_encoder_stats(AVPacket *pkt, int quality, int64_t *error, int error_count, int pict_type)
Definition: avpacket.c:820
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:31
#define FFMIN(a, b)
Definition: common.h:105
#define MKTAG(a, b, c, d)
Definition: common.h:478
#define av_mod_uintp2
Definition: common.h:149
#define FFMAX(a, b)
Definition: common.h:103
#define ARCH_X86
Definition: config.h:39
#define av_restrict
Definition: config.h:11
#define NULL
Definition: coverity.c:32
long long int64_t
Definition: coverity.c:34
#define max(a, b)
Definition: cuda_runtime.h:33
static AVFrame * frame
int avpriv_dnxhd_get_hr_frame_size(int cid, int w, int h)
Definition: dnxhddata.c:1094
void ff_dnxhd_print_profiles(AVCodecContext *avctx, int loglevel)
Definition: dnxhddata.c:1163
const CIDEntry * ff_dnxhd_get_cid_table(int cid)
Definition: dnxhddata.c:1078
int ff_dnxhd_find_cid(AVCodecContext *avctx, int bit_depth)
Definition: dnxhddata.c:1133
#define DNXHD_VARIABLE
Indicate that a CIDEntry value must be read in the bitstream.
Definition: dnxhddata.h:40
static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
Definition: dnxhdenc.c:816
static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n, int qscale, int last_index)
Definition: dnxhdenc.c:611
static int dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block, int n, int qscale, int *overflow)
Definition: dnxhdenc.c:116
static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
Definition: dnxhdenc.c:688
static const AVCodecDefault dnxhd_defaults[]
Definition: dnxhdenc.c:1364
static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:206
static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block, int n, int qscale, int *overflow)
Definition: dnxhdenc.c:175
static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet)
Definition: dnxhdenc.c:1263
static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block, const uint8_t *pixels, ptrdiff_t line_size)
Definition: dnxhdenc.c:78
static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
Definition: dnxhdenc.c:1244
#define LAMBDA_FRAC_BITS
Definition: dnxhdenc.c:44
static const AVOption options[]
Definition: dnxhdenc.c:47
static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
Definition: dnxhdenc.c:570
AVCodec ff_dnxhd_encoder
Definition: dnxhdenc.c:1369
static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
Definition: dnxhdenc.c:1155
#define VE
Definition: dnxhdenc.c:46
static const AVClass dnxhd_class
Definition: dnxhdenc.c:71
static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: dnxhdenc.c:886
static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:334
static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
Definition: dnxhdenc.c:1200
static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:924
#define DNX10BIT_QMAT_SHIFT
Definition: dnxhdenc.c:42
#define NBUCKETS
Definition: dnxhdenc.c:1146
#define RADIX_PASSES
Definition: dnxhdenc.c:1145
static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
Definition: dnxhdenc.c:659
#define RC_VARIANCE
Definition: dnxhdenc.c:43
static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
Definition: dnxhdenc.c:261
static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
Definition: dnxhdenc.c:1333
static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
Definition: dnxhdenc.c:669
static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
Definition: dnxhdenc.c:1011
static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block, int last_index, int n)
Definition: dnxhdenc.c:585
static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: dnxhdenc.c:943
static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
Definition: dnxhdenc.c:534
static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block, const uint8_t *pixels, ptrdiff_t line_size)
Definition: dnxhdenc.c:102
static int dnxhd_find_qscale(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:1088
static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)
Definition: dnxhdenc.c:1188
static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
Definition: dnxhdenc.c:1176
#define BUCKET_BITS
Definition: dnxhdenc.c:1144
static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: dnxhdenc.c:829
static int get_bucket(int value, int shift)
Definition: dnxhdenc.c:1148
static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
Definition: dnxhdenc.c:351
void ff_dnxhdenc_init_x86(DNXHDEncContext *ctx)
Definition: dnxhdenc_init.c:31
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: encode.c:33
double value
Definition: eval.c:98
av_cold void ff_fdctdsp_init(FDCTDSPContext *c, AVCodecContext *avctx)
Definition: fdctdsp.c:26
#define sample
#define MAX_THREADS
@ AV_OPT_TYPE_CONST
Definition: opt.h:234
@ AV_OPT_TYPE_INT
Definition: opt.h:225
@ AV_OPT_TYPE_BOOL
Definition: opt.h:242
#define AV_CODEC_FLAG_INTERLACED_DCT
Use interlaced DCT.
Definition: avcodec.h:321
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: codec.h:112
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: codec.h:108
@ AV_CODEC_ID_DNXHD
Definition: codec_id.h:148
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: packet.h:410
#define FF_QP2LAMBDA
factor to convert from H.263 QP to lambda
Definition: avutil.h:227
#define AVERROR(e)
Definition: error.h:43
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:215
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:235
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:237
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
@ AV_PICTURE_TYPE_I
Intra.
Definition: avutil.h:274
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
int index
Definition: gxfenc.c:89
@ FF_IDCT_PERM_NONE
Definition: idctdsp.h:38
int i
Definition: input.c:407
#define av_log2_16bit
Definition: intmath.h:84
#define AV_WB32(p, v)
Definition: intreadwrite.h:419
#define AV_WB16(p, v)
Definition: intreadwrite.h:405
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
Definition: j2kenc.c:218
av_cold void ff_blockdsp_init(BlockDSPContext *c, AVCodecContext *avctx)
Definition: blockdsp.c:60
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:49
#define FF_SIGNBIT(x)
Definition: internal.h:109
const char * arg
Definition: jacosubdec.c:66
av_cold void ff_pixblockdsp_init(PixblockDSPContext *c, AVCodecContext *avctx)
Definition: pixblockdsp.c:81
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
#define FF_DISABLE_DEPRECATION_WARNINGS
Definition: internal.h:83
#define FF_ENABLE_DEPRECATION_WARNINGS
Definition: internal.h:84
#define FF_ALLOCZ_TYPED_ARRAY(p, nelem)
Definition: internal.h:103
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:309
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
#define MASK_ABS(mask, level)
Definition: mathops.h:155
#define LOCAL_ALIGNED_16(t, v,...)
Definition: mem_internal.h:130
av_cold void ff_mpv_idct_init(MpegEncContext *s)
Definition: mpegvideo.c:331
mpegvideo header.
void ff_convert_matrix(MpegEncContext *s, int(*qmat)[64], uint16_t(*qmat16)[2][64], const uint16_t *quant_matrix, int bias, int qmin, int qmax, int intra)
Definition: mpegvideo_enc.c:92
int ff_dct_encode_init(MpegEncContext *s)
int ff_dct_quantize_c(MpegEncContext *s, int16_t *block, int n, int qscale, int *overflow)
void ff_block_permute(int16_t *block, uint8_t *permutation, const uint8_t *scantable, int last)
Permute an 8x8 block according to permutation.
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
const char data[16]
Definition: mxf.c:142
AVOptions.
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:415
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:400
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:402
const AVProfile ff_dnxhd_profiles[]
Definition: profiles.c:48
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:57
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:76
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:110
mfxU16 profile
Definition: qsvenc.c:45
static int shift(int a, int b)
Definition: sonic.c:82
unsigned int pos
Definition: spdifenc.c:412
Describe the class of an AVClass context structure.
Definition: log.h:67
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
main external API structure.
Definition: avcodec.h:536
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:746
int width
picture width / height.
Definition: avcodec.h:709
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
Definition: avcodec.h:561
attribute_deprecated AVFrame * coded_frame
the picture in the bitstream
Definition: avcodec.h:1768
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:1796
int mb_decision
macroblock decision mode
Definition: avcodec.h:1024
int profile
profile
Definition: avcodec.h:1862
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:1751
int thread_count
thread count is used to decide how many independent tasks should be passed to execute()
Definition: avcodec.h:1777
int qmax
maximum quantizer
Definition: avcodec.h:1391
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:616
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
Definition: avcodec.h:1848
void * priv_data
Definition: avcodec.h:563
AVCodec.
Definition: codec.h:197
const char * name
Name of the codec implementation.
Definition: codec.h:204
AVIOContext * pb
I/O context.
Definition: avformat.h:1274
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:332
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:396
int top_field_first
If the content is interlaced, is top field displayed first.
Definition: frame.h:470
int quality
quality (between 1 (good) and FF_LAMBDA_MAX (bad))
Definition: frame.h:441
int interlaced_frame
The content of the picture is interlaced.
Definition: frame.h:465
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:349
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:401
AVOption.
Definition: opt.h:248
This structure stores compressed data.
Definition: packet.h:346
int flags
A combination of AV_PKT_FLAG values.
Definition: packet.h:375
uint8_t * data
Definition: packet.h:369
MpegEncContext.
Definition: mpegvideo.h:81
void(* get_pixels)(int16_t *av_restrict block, const uint8_t *pixels, ptrdiff_t stride)
Definition: pixblockdsp.h:29
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples.
Definition: videodsp.h:63
uint8_t run
Definition: svq3.c:205
uint8_t level
Definition: svq3.c:206
#define av_freep(p)
#define av_malloc(s)
#define av_log(a,...)
static uint8_t tmp[11]
Definition: aes_ctr.c:27
static int16_t block[64]
Definition: dct.c:116
AVPacket * pkt
Definition: movenc.c:59
AVFormatContext * ctx
Definition: movenc.c:48
int size
#define pass
Definition: tx_template.c:347
static int first_field(const struct video_data *s)
Definition: v4l2.c:234
#define mb
static float mean(const float *input, int size)
Definition: vf_nnedi.c:864
static av_always_inline int diff(const uint32_t a, const uint32_t b)
static const uint8_t offset[127][2]
Definition: vf_spp.c:107
float min
uint8_t bits
Definition: vp3data.h:141