FFmpeg  4.4.6
apedec.c
Go to the documentation of this file.
1 /*
2  * Monkey's Audio lossless audio decoder
3  * Copyright (c) 2007 Benjamin Zores <ben@geexbox.org>
4  * based upon libdemac from Dave Chapman.
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include <inttypes.h>
24 
25 #include "libavutil/avassert.h"
27 #include "libavutil/crc.h"
28 #include "libavutil/opt.h"
29 #include "lossless_audiodsp.h"
30 #include "avcodec.h"
31 #include "bswapdsp.h"
32 #include "bytestream.h"
33 #include "internal.h"
34 #include "get_bits.h"
35 #include "unary.h"
36 
37 /**
38  * @file
39  * Monkey's Audio lossless audio decoder
40  */
41 
42 #define MAX_CHANNELS 2
43 #define MAX_BYTESPERSAMPLE 3
44 
45 #define APE_FRAMECODE_MONO_SILENCE 1
46 #define APE_FRAMECODE_STEREO_SILENCE 3
47 #define APE_FRAMECODE_PSEUDO_STEREO 4
48 
49 #define HISTORY_SIZE 512
50 #define PREDICTOR_ORDER 8
51 /** Total size of all predictor histories */
52 #define PREDICTOR_SIZE 50
53 
54 #define YDELAYA (18 + PREDICTOR_ORDER*4)
55 #define YDELAYB (18 + PREDICTOR_ORDER*3)
56 #define XDELAYA (18 + PREDICTOR_ORDER*2)
57 #define XDELAYB (18 + PREDICTOR_ORDER)
58 
59 #define YADAPTCOEFFSA 18
60 #define XADAPTCOEFFSA 14
61 #define YADAPTCOEFFSB 10
62 #define XADAPTCOEFFSB 5
63 
64 /**
65  * Possible compression levels
66  * @{
67  */
74 };
75 /** @} */
76 
77 #define APE_FILTER_LEVELS 3
78 
79 /** Filter orders depending on compression level */
80 static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
81  { 0, 0, 0 },
82  { 16, 0, 0 },
83  { 64, 0, 0 },
84  { 32, 256, 0 },
85  { 16, 256, 1280 }
86 };
87 
88 /** Filter fraction bits depending on compression level */
90  { 0, 0, 0 },
91  { 11, 0, 0 },
92  { 11, 0, 0 },
93  { 10, 13, 0 },
94  { 11, 13, 15 }
95 };
96 
97 
98 /** Filters applied to the decoded data */
99 typedef struct APEFilter {
100  int16_t *coeffs; ///< actual coefficients used in filtering
101  int16_t *adaptcoeffs; ///< adaptive filter coefficients used for correcting of actual filter coefficients
102  int16_t *historybuffer; ///< filter memory
103  int16_t *delay; ///< filtered values
104 
105  uint32_t avg;
106 } APEFilter;
107 
108 typedef struct APERice {
109  uint32_t k;
110  uint32_t ksum;
111 } APERice;
112 
113 typedef struct APERangecoder {
114  uint32_t low; ///< low end of interval
115  uint32_t range; ///< length of interval
116  uint32_t help; ///< bytes_to_follow resp. intermediate value
117  unsigned int buffer; ///< buffer for input/output
118 } APERangecoder;
119 
120 /** Filter histories */
121 typedef struct APEPredictor {
123 
125 
128 
129  uint32_t coeffsA[2][4]; ///< adaption coefficients
130  uint32_t coeffsB[2][5]; ///< adaption coefficients
132 
133  unsigned int sample_pos;
134 } APEPredictor;
135 
136 typedef struct APEPredictor64 {
138 
140 
143 
144  uint64_t coeffsA[2][4]; ///< adaption coefficients
145  uint64_t coeffsB[2][5]; ///< adaption coefficients
147 
148  unsigned int sample_pos;
150 
151 /** Decoder context */
152 typedef struct APEContext {
153  AVClass *class; ///< class for AVOptions
157  int channels;
158  int samples; ///< samples left to decode in current frame
159  int bps;
160 
161  int fileversion; ///< codec version, very important in decoding process
162  int compression_level; ///< compression levels
163  int fset; ///< which filter set to use (calculated from compression level)
164  int flags; ///< global decoder flags
165 
166  uint32_t CRC; ///< signalled frame CRC
167  uint32_t CRC_state; ///< accumulated CRC
168  int frameflags; ///< frame flags
169  APEPredictor predictor; ///< predictor used for final reconstruction
170  APEPredictor64 predictor64; ///< 64bit predictor used for final reconstruction
171 
174  int32_t *decoded[MAX_CHANNELS]; ///< decoded data for each channel
175  int blocks_per_loop; ///< maximum number of samples to decode for each call
176 
177  int16_t* filterbuf[APE_FILTER_LEVELS]; ///< filter memory
178 
179  APERangecoder rc; ///< rangecoder used to decode actual values
180  APERice riceX; ///< rice code parameters for the second channel
181  APERice riceY; ///< rice code parameters for the first channel
182  APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction
184 
185  uint8_t *data; ///< current frame data
186  uint8_t *data_end; ///< frame data end
187  int data_size; ///< frame data allocated size
188  const uint8_t *ptr; ///< current position in frame data
189 
190  int error;
191 
192  void (*entropy_decode_mono)(struct APEContext *ctx, int blockstodecode);
193  void (*entropy_decode_stereo)(struct APEContext *ctx, int blockstodecode);
194  void (*predictor_decode_mono)(struct APEContext *ctx, int count);
195  void (*predictor_decode_stereo)(struct APEContext *ctx, int count);
196 } APEContext;
197 
198 static void ape_apply_filters(APEContext *ctx, int32_t *decoded0,
199  int32_t *decoded1, int count);
200 
201 static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode);
202 static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode);
203 static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode);
204 static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode);
205 static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode);
206 static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode);
207 static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode);
208 static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode);
209 static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode);
210 
211 static void predictor_decode_mono_3800(APEContext *ctx, int count);
212 static void predictor_decode_stereo_3800(APEContext *ctx, int count);
213 static void predictor_decode_mono_3930(APEContext *ctx, int count);
214 static void predictor_decode_stereo_3930(APEContext *ctx, int count);
215 static void predictor_decode_mono_3950(APEContext *ctx, int count);
216 static void predictor_decode_stereo_3950(APEContext *ctx, int count);
217 
219 {
221  int i;
222 
223  for (i = 0; i < APE_FILTER_LEVELS; i++)
224  av_freep(&s->filterbuf[i]);
225 
226  av_freep(&s->decoded_buffer);
227  av_freep(&s->data);
228  s->decoded_size = s->data_size = 0;
229 
230  return 0;
231 }
232 
234 {
236  int i;
237 
238  if (avctx->extradata_size != 6) {
239  av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
240  return AVERROR(EINVAL);
241  }
242  if (avctx->channels > 2) {
243  av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
244  return AVERROR(EINVAL);
245  }
247  s->bps = avctx->bits_per_coded_sample;
248  switch (s->bps) {
249  case 8:
251  break;
252  case 16:
254  break;
255  case 24:
257  break;
258  default:
260  "%d bits per coded sample", s->bps);
261  return AVERROR_PATCHWELCOME;
262  }
263  s->avctx = avctx;
264  s->channels = avctx->channels;
265  s->fileversion = AV_RL16(avctx->extradata);
266  s->compression_level = AV_RL16(avctx->extradata + 2);
267  s->flags = AV_RL16(avctx->extradata + 4);
268 
269  av_log(avctx, AV_LOG_VERBOSE, "Compression Level: %d - Flags: %d\n",
270  s->compression_level, s->flags);
271  if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE ||
272  !s->compression_level ||
273  (s->fileversion < 3930 && s->compression_level == COMPRESSION_LEVEL_INSANE)) {
274  av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n",
275  s->compression_level);
276  return AVERROR_INVALIDDATA;
277  }
278  s->fset = s->compression_level / 1000 - 1;
279  for (i = 0; i < APE_FILTER_LEVELS; i++) {
280  if (!ape_filter_orders[s->fset][i])
281  break;
282  if (!(s->filterbuf[i] = av_malloc((ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4)))
283  return AVERROR(ENOMEM);
284  }
285 
286  if (s->fileversion < 3860) {
287  s->entropy_decode_mono = entropy_decode_mono_0000;
288  s->entropy_decode_stereo = entropy_decode_stereo_0000;
289  } else if (s->fileversion < 3900) {
290  s->entropy_decode_mono = entropy_decode_mono_3860;
291  s->entropy_decode_stereo = entropy_decode_stereo_3860;
292  } else if (s->fileversion < 3930) {
293  s->entropy_decode_mono = entropy_decode_mono_3900;
294  s->entropy_decode_stereo = entropy_decode_stereo_3900;
295  } else if (s->fileversion < 3990) {
296  s->entropy_decode_mono = entropy_decode_mono_3900;
297  s->entropy_decode_stereo = entropy_decode_stereo_3930;
298  } else {
299  s->entropy_decode_mono = entropy_decode_mono_3990;
300  s->entropy_decode_stereo = entropy_decode_stereo_3990;
301  }
302 
303  if (s->fileversion < 3930) {
304  s->predictor_decode_mono = predictor_decode_mono_3800;
305  s->predictor_decode_stereo = predictor_decode_stereo_3800;
306  } else if (s->fileversion < 3950) {
307  s->predictor_decode_mono = predictor_decode_mono_3930;
308  s->predictor_decode_stereo = predictor_decode_stereo_3930;
309  } else {
310  s->predictor_decode_mono = predictor_decode_mono_3950;
311  s->predictor_decode_stereo = predictor_decode_stereo_3950;
312  }
313 
314  ff_bswapdsp_init(&s->bdsp);
315  ff_llauddsp_init(&s->adsp);
317 
318  return 0;
319 }
320 
321 /**
322  * @name APE range decoding functions
323  * @{
324  */
325 
326 #define CODE_BITS 32
327 #define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1))
328 #define SHIFT_BITS (CODE_BITS - 9)
329 #define EXTRA_BITS ((CODE_BITS-2) % 8 + 1)
330 #define BOTTOM_VALUE (TOP_VALUE >> 8)
331 
332 /** Start the decoder */
333 static inline void range_start_decoding(APEContext *ctx)
334 {
335  ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
336  ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS);
337  ctx->rc.range = (uint32_t) 1 << EXTRA_BITS;
338 }
339 
340 /** Perform normalization */
341 static inline void range_dec_normalize(APEContext *ctx)
342 {
343  while (ctx->rc.range <= BOTTOM_VALUE) {
344  ctx->rc.buffer <<= 8;
345  if(ctx->ptr < ctx->data_end) {
346  ctx->rc.buffer += *ctx->ptr;
347  ctx->ptr++;
348  } else {
349  ctx->error = 1;
350  }
351  ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF);
352  ctx->rc.range <<= 8;
353  }
354 }
355 
356 /**
357  * Calculate cumulative frequency for next symbol. Does NO update!
358  * @param ctx decoder context
359  * @param tot_f is the total frequency or (code_value)1<<shift
360  * @return the cumulative frequency
361  */
362 static inline int range_decode_culfreq(APEContext *ctx, int tot_f)
363 {
365  ctx->rc.help = ctx->rc.range / tot_f;
366  return ctx->rc.low / ctx->rc.help;
367 }
368 
369 /**
370  * Decode value with given size in bits
371  * @param ctx decoder context
372  * @param shift number of bits to decode
373  */
374 static inline int range_decode_culshift(APEContext *ctx, int shift)
375 {
377  ctx->rc.help = ctx->rc.range >> shift;
378  return ctx->rc.low / ctx->rc.help;
379 }
380 
381 
382 /**
383  * Update decoding state
384  * @param ctx decoder context
385  * @param sy_f the interval length (frequency of the symbol)
386  * @param lt_f the lower end (frequency sum of < symbols)
387  */
388 static inline void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
389 {
390  ctx->rc.low -= ctx->rc.help * lt_f;
391  ctx->rc.range = ctx->rc.help * sy_f;
392 }
393 
394 /** Decode n bits (n <= 16) without modelling */
395 static inline int range_decode_bits(APEContext *ctx, int n)
396 {
397  int sym = range_decode_culshift(ctx, n);
398  range_decode_update(ctx, 1, sym);
399  return sym;
400 }
401 
402 
403 #define MODEL_ELEMENTS 64
404 
405 /**
406  * Fixed probabilities for symbols in Monkey Audio version 3.97
407  */
408 static const uint16_t counts_3970[22] = {
409  0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
410  62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
411  65450, 65469, 65480, 65487, 65491, 65493,
412 };
413 
414 /**
415  * Probability ranges for symbols in Monkey Audio version 3.97
416  */
417 static const uint16_t counts_diff_3970[21] = {
418  14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
419  1104, 677, 415, 248, 150, 89, 54, 31,
420  19, 11, 7, 4, 2,
421 };
422 
423 /**
424  * Fixed probabilities for symbols in Monkey Audio version 3.98
425  */
426 static const uint16_t counts_3980[22] = {
427  0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
428  64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
429  65485, 65488, 65490, 65491, 65492, 65493,
430 };
431 
432 /**
433  * Probability ranges for symbols in Monkey Audio version 3.98
434  */
435 static const uint16_t counts_diff_3980[21] = {
436  19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
437  261, 119, 65, 31, 19, 10, 6, 3,
438  3, 2, 1, 1, 1,
439 };
440 
441 /**
442  * Decode symbol
443  * @param ctx decoder context
444  * @param counts probability range start position
445  * @param counts_diff probability range widths
446  */
447 static inline int range_get_symbol(APEContext *ctx,
448  const uint16_t counts[],
449  const uint16_t counts_diff[])
450 {
451  int symbol, cf;
452 
453  cf = range_decode_culshift(ctx, 16);
454 
455  if(cf > 65492){
456  symbol= cf - 65535 + 63;
457  range_decode_update(ctx, 1, cf);
458  if(cf > 65535)
459  ctx->error=1;
460  return symbol;
461  }
462  /* figure out the symbol inefficiently; a binary search would be much better */
463  for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
464 
465  range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
466 
467  return symbol;
468 }
469 /** @} */ // group rangecoder
470 
471 static inline void update_rice(APERice *rice, unsigned int x)
472 {
473  int lim = rice->k ? (1 << (rice->k + 4)) : 0;
474  rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
475 
476  if (rice->ksum < lim)
477  rice->k--;
478  else if (rice->ksum >= (1 << (rice->k + 5)) && rice->k < 24)
479  rice->k++;
480 }
481 
482 static inline int get_rice_ook(GetBitContext *gb, int k)
483 {
484  unsigned int x;
485 
486  x = get_unary(gb, 1, get_bits_left(gb));
487 
488  if (k)
489  x = (x << k) | get_bits(gb, k);
490 
491  return x;
492 }
493 
495  APERice *rice)
496 {
497  unsigned int x, overflow;
498 
499  overflow = get_unary(gb, 1, get_bits_left(gb));
500 
501  if (ctx->fileversion > 3880) {
502  while (overflow >= 16) {
503  overflow -= 16;
504  rice->k += 4;
505  }
506  }
507 
508  if (!rice->k)
509  x = overflow;
510  else if(rice->k <= MIN_CACHE_BITS) {
511  x = (overflow << rice->k) + get_bits(gb, rice->k);
512  } else {
513  av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %"PRIu32"\n", rice->k);
514  ctx->error = 1;
515  return AVERROR_INVALIDDATA;
516  }
517  rice->ksum += x - (rice->ksum + 8 >> 4);
518  if (rice->ksum < (rice->k ? 1 << (rice->k + 4) : 0))
519  rice->k--;
520  else if (rice->ksum >= (1 << (rice->k + 5)) && rice->k < 24)
521  rice->k++;
522 
523  /* Convert to signed */
524  return ((x >> 1) ^ ((x & 1) - 1)) + 1;
525 }
526 
527 static inline int ape_decode_value_3900(APEContext *ctx, APERice *rice)
528 {
529  unsigned int x, overflow;
530  int tmpk;
531 
533 
534  if (overflow == (MODEL_ELEMENTS - 1)) {
535  tmpk = range_decode_bits(ctx, 5);
536  overflow = 0;
537  } else
538  tmpk = (rice->k < 1) ? 0 : rice->k - 1;
539 
540  if (tmpk <= 16 || ctx->fileversion < 3910) {
541  if (tmpk > 23) {
542  av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk);
543  return AVERROR_INVALIDDATA;
544  }
545  x = range_decode_bits(ctx, tmpk);
546  } else if (tmpk <= 31) {
547  x = range_decode_bits(ctx, 16);
548  x |= (range_decode_bits(ctx, tmpk - 16) << 16);
549  } else {
550  av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk);
551  return AVERROR_INVALIDDATA;
552  }
553  x += overflow << tmpk;
554 
555  update_rice(rice, x);
556 
557  /* Convert to signed */
558  return ((x >> 1) ^ ((x & 1) - 1)) + 1;
559 }
560 
561 static inline int ape_decode_value_3990(APEContext *ctx, APERice *rice)
562 {
563  unsigned int x, overflow, pivot;
564  int base;
565 
566  pivot = FFMAX(rice->ksum >> 5, 1);
567 
569 
570  if (overflow == (MODEL_ELEMENTS - 1)) {
571  overflow = (unsigned)range_decode_bits(ctx, 16) << 16;
572  overflow |= range_decode_bits(ctx, 16);
573  }
574 
575  if (pivot < 0x10000) {
576  base = range_decode_culfreq(ctx, pivot);
578  } else {
579  int base_hi = pivot, base_lo;
580  int bbits = 0;
581 
582  while (base_hi & ~0xFFFF) {
583  base_hi >>= 1;
584  bbits++;
585  }
586  base_hi = range_decode_culfreq(ctx, base_hi + 1);
587  range_decode_update(ctx, 1, base_hi);
588  base_lo = range_decode_culfreq(ctx, 1 << bbits);
589  range_decode_update(ctx, 1, base_lo);
590 
591  base = (base_hi << bbits) + base_lo;
592  }
593 
594  x = base + overflow * pivot;
595 
596  update_rice(rice, x);
597 
598  /* Convert to signed */
599  return ((x >> 1) ^ ((x & 1) - 1)) + 1;
600 }
601 
602 static int get_k(int ksum)
603 {
604  return av_log2(ksum) + !!ksum;
605 }
606 
608  int32_t *out, APERice *rice, int blockstodecode)
609 {
610  int i;
611  unsigned ksummax, ksummin;
612 
613  rice->ksum = 0;
614  for (i = 0; i < FFMIN(blockstodecode, 5); i++) {
615  out[i] = get_rice_ook(&ctx->gb, 10);
616  rice->ksum += out[i];
617  }
618 
619  if (blockstodecode <= 5)
620  goto end;
621 
622  rice->k = get_k(rice->ksum / 10);
623  if (rice->k >= 24)
624  return;
625  for (; i < FFMIN(blockstodecode, 64); i++) {
626  out[i] = get_rice_ook(&ctx->gb, rice->k);
627  rice->ksum += out[i];
628  rice->k = get_k(rice->ksum / ((i + 1) * 2));
629  if (rice->k >= 24)
630  return;
631  }
632 
633  if (blockstodecode <= 64)
634  goto end;
635 
636  rice->k = get_k(rice->ksum >> 7);
637  ksummax = 1 << rice->k + 7;
638  ksummin = rice->k ? (1 << rice->k + 6) : 0;
639  for (; i < blockstodecode; i++) {
640  if (get_bits_left(&ctx->gb) < 1) {
641  ctx->error = 1;
642  return;
643  }
644  out[i] = get_rice_ook(&ctx->gb, rice->k);
645  rice->ksum += out[i] - (unsigned)out[i - 64];
646  while (rice->ksum < ksummin) {
647  rice->k--;
648  ksummin = rice->k ? ksummin >> 1 : 0;
649  ksummax >>= 1;
650  }
651  while (rice->ksum >= ksummax) {
652  rice->k++;
653  if (rice->k > 24)
654  return;
655  ksummax <<= 1;
656  ksummin = ksummin ? ksummin << 1 : 128;
657  }
658  }
659 
660 end:
661  for (i = 0; i < blockstodecode; i++)
662  out[i] = ((out[i] >> 1) ^ ((out[i] & 1) - 1)) + 1;
663 }
664 
665 static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode)
666 {
667  decode_array_0000(ctx, &ctx->gb, ctx->decoded[0], &ctx->riceY,
668  blockstodecode);
669 }
670 
671 static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode)
672 {
673  decode_array_0000(ctx, &ctx->gb, ctx->decoded[0], &ctx->riceY,
674  blockstodecode);
675  decode_array_0000(ctx, &ctx->gb, ctx->decoded[1], &ctx->riceX,
676  blockstodecode);
677 }
678 
679 static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode)
680 {
681  int32_t *decoded0 = ctx->decoded[0];
682 
683  while (blockstodecode--)
684  *decoded0++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceY);
685 }
686 
687 static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode)
688 {
689  int32_t *decoded0 = ctx->decoded[0];
690  int32_t *decoded1 = ctx->decoded[1];
691  int blocks = blockstodecode;
692 
693  while (blockstodecode--)
694  *decoded0++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceY);
695  while (blocks--)
696  *decoded1++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceX);
697 }
698 
699 static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode)
700 {
701  int32_t *decoded0 = ctx->decoded[0];
702 
703  while (blockstodecode--)
704  *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY);
705 }
706 
707 static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode)
708 {
709  int32_t *decoded0 = ctx->decoded[0];
710  int32_t *decoded1 = ctx->decoded[1];
711  int blocks = blockstodecode;
712 
713  while (blockstodecode--)
714  *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY);
716  // because of some implementation peculiarities we need to backpedal here
717  ctx->ptr -= 1;
719  while (blocks--)
720  *decoded1++ = ape_decode_value_3900(ctx, &ctx->riceX);
721 }
722 
723 static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode)
724 {
725  int32_t *decoded0 = ctx->decoded[0];
726  int32_t *decoded1 = ctx->decoded[1];
727 
728  while (blockstodecode--) {
729  *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY);
730  *decoded1++ = ape_decode_value_3900(ctx, &ctx->riceX);
731  }
732 }
733 
734 static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode)
735 {
736  int32_t *decoded0 = ctx->decoded[0];
737 
738  while (blockstodecode--)
739  *decoded0++ = ape_decode_value_3990(ctx, &ctx->riceY);
740 }
741 
742 static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode)
743 {
744  int32_t *decoded0 = ctx->decoded[0];
745  int32_t *decoded1 = ctx->decoded[1];
746 
747  while (blockstodecode--) {
748  *decoded0++ = ape_decode_value_3990(ctx, &ctx->riceY);
749  *decoded1++ = ape_decode_value_3990(ctx, &ctx->riceX);
750  }
751 }
752 
754 {
755  /* Read the CRC */
756  if (ctx->fileversion >= 3900) {
757  if (ctx->data_end - ctx->ptr < 6)
758  return AVERROR_INVALIDDATA;
759  ctx->CRC = bytestream_get_be32(&ctx->ptr);
760  } else {
761  ctx->CRC = get_bits_long(&ctx->gb, 32);
762  }
763 
764  /* Read the frame flags if they exist */
765  ctx->frameflags = 0;
766  ctx->CRC_state = UINT32_MAX;
767  if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
768  ctx->CRC &= ~0x80000000;
769 
770  if (ctx->data_end - ctx->ptr < 6)
771  return AVERROR_INVALIDDATA;
772  ctx->frameflags = bytestream_get_be32(&ctx->ptr);
773  }
774 
775  /* Initialize the rice structs */
776  ctx->riceX.k = 10;
777  ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
778  ctx->riceY.k = 10;
779  ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
780 
781  if (ctx->fileversion >= 3900) {
782  /* The first 8 bits of input are ignored. */
783  ctx->ptr++;
784 
786  }
787 
788  return 0;
789 }
790 
792  375,
793 };
794 
795 static const int32_t initial_coeffs_a_3800[3] = {
796  64, 115, 64,
797 };
798 
799 static const int32_t initial_coeffs_b_3800[2] = {
800  740, 0
801 };
802 
803 static const int32_t initial_coeffs_3930[4] = {
804  360, 317, -109, 98
805 };
806 
808  360, 317, -109, 98
809 };
810 
812 {
813  APEPredictor *p = &ctx->predictor;
814  APEPredictor64 *p64 = &ctx->predictor64;
815 
816  /* Zero the history buffers */
817  memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(*p->historybuffer));
818  memset(p64->historybuffer, 0, PREDICTOR_SIZE * sizeof(*p64->historybuffer));
819  p->buf = p->historybuffer;
820  p64->buf = p64->historybuffer;
821 
822  /* Initialize and zero the coefficients */
823  if (ctx->fileversion < 3930) {
824  if (ctx->compression_level == COMPRESSION_LEVEL_FAST) {
825  memcpy(p->coeffsA[0], initial_coeffs_fast_3320,
826  sizeof(initial_coeffs_fast_3320));
827  memcpy(p->coeffsA[1], initial_coeffs_fast_3320,
828  sizeof(initial_coeffs_fast_3320));
829  } else {
830  memcpy(p->coeffsA[0], initial_coeffs_a_3800,
831  sizeof(initial_coeffs_a_3800));
832  memcpy(p->coeffsA[1], initial_coeffs_a_3800,
833  sizeof(initial_coeffs_a_3800));
834  }
835  } else {
836  memcpy(p->coeffsA[0], initial_coeffs_3930, sizeof(initial_coeffs_3930));
837  memcpy(p->coeffsA[1], initial_coeffs_3930, sizeof(initial_coeffs_3930));
840  }
841  memset(p->coeffsB, 0, sizeof(p->coeffsB));
842  memset(p64->coeffsB, 0, sizeof(p64->coeffsB));
843  if (ctx->fileversion < 3930) {
844  memcpy(p->coeffsB[0], initial_coeffs_b_3800,
845  sizeof(initial_coeffs_b_3800));
846  memcpy(p->coeffsB[1], initial_coeffs_b_3800,
847  sizeof(initial_coeffs_b_3800));
848  }
849 
850  p->filterA[0] = p->filterA[1] = 0;
851  p->filterB[0] = p->filterB[1] = 0;
852  p->lastA[0] = p->lastA[1] = 0;
853 
854  p64->filterA[0] = p64->filterA[1] = 0;
855  p64->filterB[0] = p64->filterB[1] = 0;
856  p64->lastA[0] = p64->lastA[1] = 0;
857 
858  p->sample_pos = 0;
859 
860  p64->sample_pos = 0;
861 }
862 
863 /** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */
864 static inline int APESIGN(int32_t x) {
865  return (x < 0) - (x > 0);
866 }
867 
869  const int decoded, const int filter,
870  const int delayA)
871 {
872  int32_t predictionA;
873 
874  p->buf[delayA] = p->lastA[filter];
875  if (p->sample_pos < 3) {
876  p->lastA[filter] = decoded;
877  p->filterA[filter] = decoded;
878  return decoded;
879  }
880 
881  predictionA = p->buf[delayA] * 2U - p->buf[delayA - 1];
882  p->lastA[filter] = decoded + (unsigned)((int32_t)(predictionA * p->coeffsA[filter][0]) >> 9);
883 
884  if ((decoded ^ predictionA) > 0)
885  p->coeffsA[filter][0]++;
886  else
887  p->coeffsA[filter][0]--;
888 
889  p->filterA[filter] += (unsigned)p->lastA[filter];
890 
891  return p->filterA[filter];
892 }
893 
895  const unsigned decoded, const int filter,
896  const int delayA, const int delayB,
897  const int start, const int shift)
898 {
899  int32_t predictionA, predictionB, sign;
900  int32_t d0, d1, d2, d3, d4;
901 
902  p->buf[delayA] = p->lastA[filter];
903  p->buf[delayB] = p->filterB[filter];
904  if (p->sample_pos < start) {
905  predictionA = decoded + p->filterA[filter];
906  p->lastA[filter] = decoded;
907  p->filterB[filter] = decoded;
908  p->filterA[filter] = predictionA;
909  return predictionA;
910  }
911  d2 = p->buf[delayA];
912  d1 = (p->buf[delayA] - (unsigned)p->buf[delayA - 1]) * 2;
913  d0 = p->buf[delayA] + ((p->buf[delayA - 2] - (unsigned)p->buf[delayA - 1]) * 8);
914  d3 = p->buf[delayB] * 2U - p->buf[delayB - 1];
915  d4 = p->buf[delayB];
916 
917  predictionA = d0 * p->coeffsA[filter][0] +
918  d1 * p->coeffsA[filter][1] +
919  d2 * p->coeffsA[filter][2];
920 
921  sign = APESIGN(decoded);
922  p->coeffsA[filter][0] += (((d0 >> 30) & 2) - 1) * sign;
923  p->coeffsA[filter][1] += (((d1 >> 28) & 8) - 4) * sign;
924  p->coeffsA[filter][2] += (((d2 >> 28) & 8) - 4) * sign;
925 
926  predictionB = d3 * p->coeffsB[filter][0] -
927  d4 * p->coeffsB[filter][1];
928  p->lastA[filter] = decoded + (predictionA >> 11);
929  sign = APESIGN(p->lastA[filter]);
930  p->coeffsB[filter][0] += (((d3 >> 29) & 4) - 2) * sign;
931  p->coeffsB[filter][1] -= (((d4 >> 30) & 2) - 1) * sign;
932 
933  p->filterB[filter] = p->lastA[filter] + (unsigned)(predictionB >> shift);
934  p->filterA[filter] = p->filterB[filter] + (unsigned)((int)(p->filterA[filter] * 31U) >> 5);
935 
936  return p->filterA[filter];
937 }
938 
939 static void long_filter_high_3800(int32_t *buffer, int order, int shift, int length)
940 {
941  int i, j;
942  int32_t dotprod, sign;
943  int32_t coeffs[256], delay[256];
944 
945  if (order >= length)
946  return;
947 
948  memset(coeffs, 0, order * sizeof(*coeffs));
949  for (i = 0; i < order; i++)
950  delay[i] = buffer[i];
951  for (i = order; i < length; i++) {
952  dotprod = 0;
953  sign = APESIGN(buffer[i]);
954  for (j = 0; j < order; j++) {
955  dotprod += delay[j] * (unsigned)coeffs[j];
956  coeffs[j] += ((delay[j] >> 31) | 1) * sign;
957  }
958  buffer[i] -= (unsigned)(dotprod >> shift);
959  for (j = 0; j < order - 1; j++)
960  delay[j] = delay[j + 1];
961  delay[order - 1] = buffer[i];
962  }
963 }
964 
965 static void long_filter_ehigh_3830(int32_t *buffer, int length)
966 {
967  int i, j;
968  int32_t dotprod, sign;
969  int32_t delay[8] = { 0 };
970  uint32_t coeffs[8] = { 0 };
971 
972  for (i = 0; i < length; i++) {
973  dotprod = 0;
974  sign = APESIGN(buffer[i]);
975  for (j = 7; j >= 0; j--) {
976  dotprod += delay[j] * coeffs[j];
977  coeffs[j] += ((delay[j] >> 31) | 1) * sign;
978  }
979  for (j = 7; j > 0; j--)
980  delay[j] = delay[j - 1];
981  delay[0] = buffer[i];
982  buffer[i] -= (unsigned)(dotprod >> 9);
983  }
984 }
985 
987 {
988  APEPredictor *p = &ctx->predictor;
989  int32_t *decoded0 = ctx->decoded[0];
990  int32_t *decoded1 = ctx->decoded[1];
991  int start = 4, shift = 10;
992 
993  if (ctx->compression_level == COMPRESSION_LEVEL_HIGH) {
994  start = 16;
995  long_filter_high_3800(decoded0, 16, 9, count);
996  long_filter_high_3800(decoded1, 16, 9, count);
997  } else if (ctx->compression_level == COMPRESSION_LEVEL_EXTRA_HIGH) {
998  int order = 128, shift2 = 11;
999 
1000  if (ctx->fileversion >= 3830) {
1001  order <<= 1;
1002  shift++;
1003  shift2++;
1004  long_filter_ehigh_3830(decoded0 + order, count - order);
1005  long_filter_ehigh_3830(decoded1 + order, count - order);
1006  }
1007  start = order;
1008  long_filter_high_3800(decoded0, order, shift2, count);
1009  long_filter_high_3800(decoded1, order, shift2, count);
1010  }
1011 
1012  while (count--) {
1013  int X = *decoded0, Y = *decoded1;
1014  if (ctx->compression_level == COMPRESSION_LEVEL_FAST) {
1015  *decoded0 = filter_fast_3320(p, Y, 0, YDELAYA);
1016  decoded0++;
1017  *decoded1 = filter_fast_3320(p, X, 1, XDELAYA);
1018  decoded1++;
1019  } else {
1020  *decoded0 = filter_3800(p, Y, 0, YDELAYA, YDELAYB,
1021  start, shift);
1022  decoded0++;
1023  *decoded1 = filter_3800(p, X, 1, XDELAYA, XDELAYB,
1024  start, shift);
1025  decoded1++;
1026  }
1027 
1028  /* Combined */
1029  p->buf++;
1030  p->sample_pos++;
1031 
1032  /* Have we filled the history buffer? */
1033  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1034  memmove(p->historybuffer, p->buf,
1035  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1036  p->buf = p->historybuffer;
1037  }
1038  }
1039 }
1040 
1042 {
1043  APEPredictor *p = &ctx->predictor;
1044  int32_t *decoded0 = ctx->decoded[0];
1045  int start = 4, shift = 10;
1046 
1047  if (ctx->compression_level == COMPRESSION_LEVEL_HIGH) {
1048  start = 16;
1049  long_filter_high_3800(decoded0, 16, 9, count);
1050  } else if (ctx->compression_level == COMPRESSION_LEVEL_EXTRA_HIGH) {
1051  int order = 128, shift2 = 11;
1052 
1053  if (ctx->fileversion >= 3830) {
1054  order <<= 1;
1055  shift++;
1056  shift2++;
1057  long_filter_ehigh_3830(decoded0 + order, count - order);
1058  }
1059  start = order;
1060  long_filter_high_3800(decoded0, order, shift2, count);
1061  }
1062 
1063  while (count--) {
1064  if (ctx->compression_level == COMPRESSION_LEVEL_FAST) {
1065  *decoded0 = filter_fast_3320(p, *decoded0, 0, YDELAYA);
1066  decoded0++;
1067  } else {
1068  *decoded0 = filter_3800(p, *decoded0, 0, YDELAYA, YDELAYB,
1069  start, shift);
1070  decoded0++;
1071  }
1072 
1073  /* Combined */
1074  p->buf++;
1075  p->sample_pos++;
1076 
1077  /* Have we filled the history buffer? */
1078  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1079  memmove(p->historybuffer, p->buf,
1080  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1081  p->buf = p->historybuffer;
1082  }
1083  }
1084 }
1085 
1087  const int decoded, const int filter,
1088  const int delayA)
1089 {
1090  int32_t predictionA, sign;
1091  uint32_t d0, d1, d2, d3;
1092 
1093  p->buf[delayA] = p->lastA[filter];
1094  d0 = p->buf[delayA ];
1095  d1 = p->buf[delayA ] - (unsigned)p->buf[delayA - 1];
1096  d2 = p->buf[delayA - 1] - (unsigned)p->buf[delayA - 2];
1097  d3 = p->buf[delayA - 2] - (unsigned)p->buf[delayA - 3];
1098 
1099  predictionA = d0 * p->coeffsA[filter][0] +
1100  d1 * p->coeffsA[filter][1] +
1101  d2 * p->coeffsA[filter][2] +
1102  d3 * p->coeffsA[filter][3];
1103 
1104  p->lastA[filter] = decoded + (predictionA >> 9);
1105  p->filterA[filter] = p->lastA[filter] + ((int)(p->filterA[filter] * 31U) >> 5);
1106 
1107  sign = APESIGN(decoded);
1108  p->coeffsA[filter][0] += (((int32_t)d0 < 0) * 2 - 1) * sign;
1109  p->coeffsA[filter][1] += (((int32_t)d1 < 0) * 2 - 1) * sign;
1110  p->coeffsA[filter][2] += (((int32_t)d2 < 0) * 2 - 1) * sign;
1111  p->coeffsA[filter][3] += (((int32_t)d3 < 0) * 2 - 1) * sign;
1112 
1113  return p->filterA[filter];
1114 }
1115 
1117 {
1118  APEPredictor *p = &ctx->predictor;
1119  int32_t *decoded0 = ctx->decoded[0];
1120  int32_t *decoded1 = ctx->decoded[1];
1121 
1122  ape_apply_filters(ctx, ctx->decoded[0], ctx->decoded[1], count);
1123 
1124  while (count--) {
1125  /* Predictor Y */
1126  int Y = *decoded1, X = *decoded0;
1127  *decoded0 = predictor_update_3930(p, Y, 0, YDELAYA);
1128  decoded0++;
1129  *decoded1 = predictor_update_3930(p, X, 1, XDELAYA);
1130  decoded1++;
1131 
1132  /* Combined */
1133  p->buf++;
1134 
1135  /* Have we filled the history buffer? */
1136  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1137  memmove(p->historybuffer, p->buf,
1138  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1139  p->buf = p->historybuffer;
1140  }
1141  }
1142 }
1143 
1145 {
1146  APEPredictor *p = &ctx->predictor;
1147  int32_t *decoded0 = ctx->decoded[0];
1148 
1149  ape_apply_filters(ctx, ctx->decoded[0], NULL, count);
1150 
1151  while (count--) {
1152  *decoded0 = predictor_update_3930(p, *decoded0, 0, YDELAYA);
1153  decoded0++;
1154 
1155  p->buf++;
1156 
1157  /* Have we filled the history buffer? */
1158  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1159  memmove(p->historybuffer, p->buf,
1160  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1161  p->buf = p->historybuffer;
1162  }
1163  }
1164 }
1165 
1167  const int decoded, const int filter,
1168  const int delayA, const int delayB,
1169  const int adaptA, const int adaptB,
1170  int compression_level)
1171 {
1172  int64_t predictionA, predictionB;
1173  int32_t sign;
1174 
1175  p->buf[delayA] = p->lastA[filter];
1176  p->buf[adaptA] = APESIGN(p->buf[delayA]);
1177  p->buf[delayA - 1] = p->buf[delayA] - (uint64_t)p->buf[delayA - 1];
1178  p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
1179 
1180  predictionA = p->buf[delayA ] * p->coeffsA[filter][0] +
1181  p->buf[delayA - 1] * p->coeffsA[filter][1] +
1182  p->buf[delayA - 2] * p->coeffsA[filter][2] +
1183  p->buf[delayA - 3] * p->coeffsA[filter][3];
1184 
1185  /* Apply a scaled first-order filter compression */
1186  p->buf[delayB] = p->filterA[filter ^ 1] - ((int64_t)(p->filterB[filter] * 31ULL) >> 5);
1187  p->buf[adaptB] = APESIGN(p->buf[delayB]);
1188  p->buf[delayB - 1] = p->buf[delayB] - (uint64_t)p->buf[delayB - 1];
1189  p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
1190  p->filterB[filter] = p->filterA[filter ^ 1];
1191 
1192  predictionB = p->buf[delayB ] * p->coeffsB[filter][0] +
1193  p->buf[delayB - 1] * p->coeffsB[filter][1] +
1194  p->buf[delayB - 2] * p->coeffsB[filter][2] +
1195  p->buf[delayB - 3] * p->coeffsB[filter][3] +
1196  p->buf[delayB - 4] * p->coeffsB[filter][4];
1197 
1199  predictionA = (int32_t)predictionA;
1200  predictionB = (int32_t)predictionB;
1201  p->lastA[filter] = (int32_t)(decoded + (unsigned)((int32_t)(predictionA + (predictionB >> 1)) >> 10));
1202  } else {
1203  p->lastA[filter] = decoded + ((int64_t)((uint64_t)predictionA + (predictionB >> 1)) >> 10);
1204  }
1205  p->filterA[filter] = p->lastA[filter] + ((int64_t)(p->filterA[filter] * 31ULL) >> 5);
1206 
1207  sign = APESIGN(decoded);
1208  p->coeffsA[filter][0] += p->buf[adaptA ] * sign;
1209  p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign;
1210  p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign;
1211  p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign;
1212  p->coeffsB[filter][0] += p->buf[adaptB ] * sign;
1213  p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign;
1214  p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign;
1215  p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign;
1216  p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign;
1217 
1218  return p->filterA[filter];
1219 }
1220 
1222 {
1223  APEPredictor64 *p = &ctx->predictor64;
1224  int32_t *decoded0 = ctx->decoded[0];
1225  int32_t *decoded1 = ctx->decoded[1];
1226 
1227  ape_apply_filters(ctx, ctx->decoded[0], ctx->decoded[1], count);
1228 
1229  while (count--) {
1230  /* Predictor Y */
1231  *decoded0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB,
1233  ctx->compression_level);
1234  decoded0++;
1235  *decoded1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB,
1237  ctx->compression_level);
1238  decoded1++;
1239 
1240  /* Combined */
1241  p->buf++;
1242 
1243  /* Have we filled the history buffer? */
1244  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1245  memmove(p->historybuffer, p->buf,
1246  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1247  p->buf = p->historybuffer;
1248  }
1249  }
1250 }
1251 
1253 {
1254  APEPredictor64 *p = &ctx->predictor64;
1255  int32_t *decoded0 = ctx->decoded[0];
1256  int32_t predictionA, currentA, A, sign;
1257 
1258  ape_apply_filters(ctx, ctx->decoded[0], NULL, count);
1259 
1260  currentA = p->lastA[0];
1261 
1262  while (count--) {
1263  A = *decoded0;
1264 
1265  p->buf[YDELAYA] = currentA;
1266  p->buf[YDELAYA - 1] = p->buf[YDELAYA] - (uint64_t)p->buf[YDELAYA - 1];
1267 
1268  predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] +
1269  p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
1270  p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
1271  p->buf[YDELAYA - 3] * p->coeffsA[0][3];
1272 
1273  currentA = A + (uint64_t)(predictionA >> 10);
1274 
1275  p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]);
1276  p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
1277 
1278  sign = APESIGN(A);
1279  p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ] * sign;
1280  p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign;
1281  p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign;
1282  p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign;
1283 
1284  p->buf++;
1285 
1286  /* Have we filled the history buffer? */
1287  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1288  memmove(p->historybuffer, p->buf,
1289  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1290  p->buf = p->historybuffer;
1291  }
1292 
1293  p->filterA[0] = currentA + (uint64_t)((int64_t)(p->filterA[0] * 31U) >> 5);
1294  *(decoded0++) = p->filterA[0];
1295  }
1296 
1297  p->lastA[0] = currentA;
1298 }
1299 
1300 static void do_init_filter(APEFilter *f, int16_t *buf, int order)
1301 {
1302  f->coeffs = buf;
1303  f->historybuffer = buf + order;
1304  f->delay = f->historybuffer + order * 2;
1305  f->adaptcoeffs = f->historybuffer + order;
1306 
1307  memset(f->historybuffer, 0, (order * 2) * sizeof(*f->historybuffer));
1308  memset(f->coeffs, 0, order * sizeof(*f->coeffs));
1309  f->avg = 0;
1310 }
1311 
1312 static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
1313 {
1314  do_init_filter(&f[0], buf, order);
1315  do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
1316 }
1317 
1319  int32_t *data, int count, int order, int fracbits)
1320 {
1321  int res;
1322  unsigned absres;
1323 
1324  while (count--) {
1325  /* round fixedpoint scalar product */
1326  res = ctx->adsp.scalarproduct_and_madd_int16(f->coeffs,
1327  f->delay - order,
1328  f->adaptcoeffs - order,
1329  order, APESIGN(*data));
1330  res = (int64_t)(res + (1LL << (fracbits - 1))) >> fracbits;
1331  res += (unsigned)*data;
1332  *data++ = res;
1333 
1334  /* Update the output history */
1335  *f->delay++ = av_clip_int16(res);
1336 
1337  if (version < 3980) {
1338  /* Version ??? to < 3.98 files (untested) */
1339  f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
1340  f->adaptcoeffs[-4] >>= 1;
1341  f->adaptcoeffs[-8] >>= 1;
1342  } else {
1343  /* Version 3.98 and later files */
1344 
1345  /* Update the adaption coefficients */
1346  absres = FFABSU(res);
1347  if (absres)
1348  *f->adaptcoeffs = APESIGN(res) *
1349  (8 << ((absres > f->avg * 3LL) + (absres > (f->avg + f->avg / 3))));
1350  /* equivalent to the following code
1351  if (absres <= f->avg * 4 / 3)
1352  *f->adaptcoeffs = APESIGN(res) * 8;
1353  else if (absres <= f->avg * 3)
1354  *f->adaptcoeffs = APESIGN(res) * 16;
1355  else
1356  *f->adaptcoeffs = APESIGN(res) * 32;
1357  */
1358  else
1359  *f->adaptcoeffs = 0;
1360 
1361  f->avg += (int)(absres - (unsigned)f->avg) / 16;
1362 
1363  f->adaptcoeffs[-1] >>= 1;
1364  f->adaptcoeffs[-2] >>= 1;
1365  f->adaptcoeffs[-8] >>= 1;
1366  }
1367 
1368  f->adaptcoeffs++;
1369 
1370  /* Have we filled the history buffer? */
1371  if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
1372  memmove(f->historybuffer, f->delay - (order * 2),
1373  (order * 2) * sizeof(*f->historybuffer));
1374  f->delay = f->historybuffer + order * 2;
1375  f->adaptcoeffs = f->historybuffer + order;
1376  }
1377  }
1378 }
1379 
1381  int32_t *data0, int32_t *data1,
1382  int count, int order, int fracbits)
1383 {
1384  do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits);
1385  if (data1)
1386  do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits);
1387 }
1388 
1389 static void ape_apply_filters(APEContext *ctx, int32_t *decoded0,
1390  int32_t *decoded1, int count)
1391 {
1392  int i;
1393 
1394  for (i = 0; i < APE_FILTER_LEVELS; i++) {
1395  if (!ape_filter_orders[ctx->fset][i])
1396  break;
1397  apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count,
1398  ape_filter_orders[ctx->fset][i],
1399  ape_filter_fracbits[ctx->fset][i]);
1400  }
1401 }
1402 
1404 {
1405  int i, ret;
1406  if ((ret = init_entropy_decoder(ctx)) < 0)
1407  return ret;
1409 
1410  for (i = 0; i < APE_FILTER_LEVELS; i++) {
1411  if (!ape_filter_orders[ctx->fset][i])
1412  break;
1413  init_filter(ctx, ctx->filters[i], ctx->filterbuf[i],
1414  ape_filter_orders[ctx->fset][i]);
1415  }
1416  return 0;
1417 }
1418 
1419 static void ape_unpack_mono(APEContext *ctx, int count)
1420 {
1421  if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
1422  /* We are pure silence, so we're done. */
1423  av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
1424  return;
1425  }
1426 
1427  ctx->entropy_decode_mono(ctx, count);
1428  if (ctx->error)
1429  return;
1430 
1431  /* Now apply the predictor decoding */
1432  ctx->predictor_decode_mono(ctx, count);
1433 
1434  /* Pseudo-stereo - just copy left channel to right channel */
1435  if (ctx->channels == 2) {
1436  memcpy(ctx->decoded[1], ctx->decoded[0], count * sizeof(*ctx->decoded[1]));
1437  }
1438 }
1439 
1440 static void ape_unpack_stereo(APEContext *ctx, int count)
1441 {
1442  unsigned left, right;
1443  int32_t *decoded0 = ctx->decoded[0];
1444  int32_t *decoded1 = ctx->decoded[1];
1445 
1447  /* We are pure silence, so we're done. */
1448  av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
1449  return;
1450  }
1451 
1452  ctx->entropy_decode_stereo(ctx, count);
1453  if (ctx->error)
1454  return;
1455 
1456  /* Now apply the predictor decoding */
1457  ctx->predictor_decode_stereo(ctx, count);
1458 
1459  /* Decorrelate and scale to output depth */
1460  while (count--) {
1461  left = *decoded1 - (unsigned)(*decoded0 / 2);
1462  right = left + *decoded0;
1463 
1464  *(decoded0++) = left;
1465  *(decoded1++) = right;
1466  }
1467 }
1468 
1470  int *got_frame_ptr, AVPacket *avpkt)
1471 {
1472  AVFrame *frame = data;
1473  const uint8_t *buf = avpkt->data;
1475  uint8_t *sample8;
1476  int16_t *sample16;
1477  int32_t *sample24;
1478  int i, ch, ret;
1479  int blockstodecode;
1480  uint64_t decoded_buffer_size;
1481 
1482  /* this should never be negative, but bad things will happen if it is, so
1483  check it just to make sure. */
1484  av_assert0(s->samples >= 0);
1485 
1486  if(!s->samples){
1487  uint32_t nblocks, offset;
1488  int buf_size;
1489 
1490  if (!avpkt->size) {
1491  *got_frame_ptr = 0;
1492  return 0;
1493  }
1494  if (avpkt->size < 8) {
1495  av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
1496  return AVERROR_INVALIDDATA;
1497  }
1498  buf_size = avpkt->size & ~3;
1499  if (buf_size != avpkt->size) {
1500  av_log(avctx, AV_LOG_WARNING, "packet size is not a multiple of 4. "
1501  "extra bytes at the end will be skipped.\n");
1502  }
1503  if (s->fileversion < 3950) // previous versions overread two bytes
1504  buf_size += 2;
1505  av_fast_padded_malloc(&s->data, &s->data_size, buf_size);
1506  if (!s->data)
1507  return AVERROR(ENOMEM);
1508  s->bdsp.bswap_buf((uint32_t *) s->data, (const uint32_t *) buf,
1509  buf_size >> 2);
1510  memset(s->data + (buf_size & ~3), 0, buf_size & 3);
1511  s->ptr = s->data;
1512  s->data_end = s->data + buf_size;
1513 
1514  nblocks = bytestream_get_be32(&s->ptr);
1515  offset = bytestream_get_be32(&s->ptr);
1516  if (s->fileversion >= 3900) {
1517  if (offset > 3) {
1518  av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
1519  av_freep(&s->data);
1520  s->data_size = 0;
1521  return AVERROR_INVALIDDATA;
1522  }
1523  if (s->data_end - s->ptr < offset) {
1524  av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
1525  return AVERROR_INVALIDDATA;
1526  }
1527  s->ptr += offset;
1528  } else {
1529  if ((ret = init_get_bits8(&s->gb, s->ptr, s->data_end - s->ptr)) < 0)
1530  return ret;
1531  if (s->fileversion > 3800)
1532  skip_bits_long(&s->gb, offset * 8);
1533  else
1534  skip_bits_long(&s->gb, offset);
1535  }
1536 
1537  if (!nblocks || nblocks > INT_MAX / 2 / sizeof(*s->decoded_buffer) - 8) {
1538  av_log(avctx, AV_LOG_ERROR, "Invalid sample count: %"PRIu32".\n",
1539  nblocks);
1540  return AVERROR_INVALIDDATA;
1541  }
1542 
1543  /* Initialize the frame decoder */
1544  if (init_frame_decoder(s) < 0) {
1545  av_log(avctx, AV_LOG_ERROR, "Error reading frame header\n");
1546  return AVERROR_INVALIDDATA;
1547  }
1548  s->samples = nblocks;
1549  }
1550 
1551  if (!s->data) {
1552  *got_frame_ptr = 0;
1553  return avpkt->size;
1554  }
1555 
1556  blockstodecode = FFMIN(s->blocks_per_loop, s->samples);
1557  // for old files coefficients were not interleaved,
1558  // so we need to decode all of them at once
1559  if (s->fileversion < 3930)
1560  blockstodecode = s->samples;
1561 
1562  /* reallocate decoded sample buffer if needed */
1563  decoded_buffer_size = 2LL * FFALIGN(blockstodecode, 8) * sizeof(*s->decoded_buffer);
1564  av_assert0(decoded_buffer_size <= INT_MAX);
1565 
1566  /* get output buffer */
1567  frame->nb_samples = blockstodecode;
1568  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
1569  s->samples=0;
1570  return ret;
1571  }
1572 
1573  av_fast_malloc(&s->decoded_buffer, &s->decoded_size, decoded_buffer_size);
1574  if (!s->decoded_buffer)
1575  return AVERROR(ENOMEM);
1576  memset(s->decoded_buffer, 0, decoded_buffer_size);
1577  s->decoded[0] = s->decoded_buffer;
1578  s->decoded[1] = s->decoded_buffer + FFALIGN(blockstodecode, 8);
1579 
1580  s->error=0;
1581 
1582  if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
1583  ape_unpack_mono(s, blockstodecode);
1584  else
1585  ape_unpack_stereo(s, blockstodecode);
1586  emms_c();
1587 
1588  if (s->error) {
1589  s->samples=0;
1590  av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
1591  return AVERROR_INVALIDDATA;
1592  }
1593 
1594  switch (s->bps) {
1595  case 8:
1596  for (ch = 0; ch < s->channels; ch++) {
1597  sample8 = (uint8_t *)frame->data[ch];
1598  for (i = 0; i < blockstodecode; i++)
1599  *sample8++ = (s->decoded[ch][i] + 0x80U) & 0xff;
1600  }
1601  break;
1602  case 16:
1603  for (ch = 0; ch < s->channels; ch++) {
1604  sample16 = (int16_t *)frame->data[ch];
1605  for (i = 0; i < blockstodecode; i++)
1606  *sample16++ = s->decoded[ch][i];
1607  }
1608  break;
1609  case 24:
1610  for (ch = 0; ch < s->channels; ch++) {
1611  sample24 = (int32_t *)frame->data[ch];
1612  for (i = 0; i < blockstodecode; i++)
1613  *sample24++ = s->decoded[ch][i] * 256U;
1614  }
1615  break;
1616  }
1617 
1618  s->samples -= blockstodecode;
1619 
1621  s->fileversion >= 3900) {
1622  uint32_t crc = s->CRC_state;
1623  const AVCRC *crc_tab = av_crc_get_table(AV_CRC_32_IEEE_LE);
1624  int stride = s->bps == 24 ? 4 : (s->bps>>3);
1625  int offset = s->bps == 24;
1626  int bytes = s->bps >> 3;
1627 
1628  for (i = 0; i < blockstodecode; i++) {
1629  for (ch = 0; ch < s->channels; ch++) {
1630 #if HAVE_BIGENDIAN
1631  uint8_t *smp_native = frame->data[ch] + i*stride;
1632  uint8_t smp[4];
1633  for(int j = 0; j<stride; j++)
1634  smp[j] = smp_native[stride-j-1];
1635 #else
1636  uint8_t *smp = frame->data[ch] + i*stride;
1637 #endif
1638  crc = av_crc(crc_tab, crc, smp+offset, bytes);
1639  }
1640  }
1641 
1642  if (!s->samples && (~crc >> 1) ^ s->CRC) {
1643  av_log(avctx, AV_LOG_ERROR, "CRC mismatch! Previously decoded "
1644  "frames may have been affected as well.\n");
1646  return AVERROR_INVALIDDATA;
1647  }
1648 
1649  s->CRC_state = crc;
1650  }
1651 
1652  *got_frame_ptr = 1;
1653 
1654  return !s->samples ? avpkt->size : 0;
1655 }
1656 
1658 {
1660  s->samples= 0;
1661 }
1662 
1663 #define OFFSET(x) offsetof(APEContext, x)
1664 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)
1665 static const AVOption options[] = {
1666  { "max_samples", "maximum number of samples decoded per call", OFFSET(blocks_per_loop), AV_OPT_TYPE_INT, { .i64 = 4608 }, 1, INT_MAX, PAR, "max_samples" },
1667  { "all", "no maximum. decode all samples for each packet at once", 0, AV_OPT_TYPE_CONST, { .i64 = INT_MAX }, INT_MIN, INT_MAX, PAR, "max_samples" },
1668  { NULL},
1669 };
1670 
1671 static const AVClass ape_decoder_class = {
1672  .class_name = "APE decoder",
1673  .item_name = av_default_item_name,
1674  .option = options,
1675  .version = LIBAVUTIL_VERSION_INT,
1676 };
1677 
1679  .name = "ape",
1680  .long_name = NULL_IF_CONFIG_SMALL("Monkey's Audio"),
1681  .type = AVMEDIA_TYPE_AUDIO,
1682  .id = AV_CODEC_ID_APE,
1683  .priv_data_size = sizeof(APEContext),
1684  .init = ape_decode_init,
1685  .close = ape_decode_close,
1687  .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DELAY |
1689  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
1690  .flush = ape_flush,
1691  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_U8P,
1695  .priv_class = &ape_decoder_class,
1696 };
static void flush(AVCodecContext *avctx)
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:925
static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode)
Definition: apedec.c:687
static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode)
Definition: apedec.c:723
static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS]
Filter fraction bits depending on compression level.
Definition: apedec.c:89
static void range_dec_normalize(APEContext *ctx)
Perform normalization.
Definition: apedec.c:341
static av_cold int ape_decode_close(AVCodecContext *avctx)
Definition: apedec.c:218
static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode)
Definition: apedec.c:679
#define XDELAYA
Definition: apedec.c:56
#define XADAPTCOEFFSA
Definition: apedec.c:60
static int APESIGN(int32_t x)
Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero)
Definition: apedec.c:864
static const int32_t initial_coeffs_fast_3320[1]
Definition: apedec.c:791
#define YADAPTCOEFFSB
Definition: apedec.c:61
#define BOTTOM_VALUE
Definition: apedec.c:330
static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode)
Definition: apedec.c:699
static av_always_inline int filter_fast_3320(APEPredictor *p, const int decoded, const int filter, const int delayA)
Definition: apedec.c:868
#define PAR
Definition: apedec.c:1664
static int ape_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Definition: apedec.c:1469
static int ape_decode_value_3900(APEContext *ctx, APERice *rice)
Definition: apedec.c:527
static const AVOption options[]
Definition: apedec.c:1665
static void do_apply_filter(APEContext *ctx, int version, APEFilter *f, int32_t *data, int count, int order, int fracbits)
Definition: apedec.c:1318
static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS]
Filter orders depending on compression level.
Definition: apedec.c:80
static void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
Update decoding state.
Definition: apedec.c:388
static void predictor_decode_stereo_3950(APEContext *ctx, int count)
Definition: apedec.c:1221
#define HISTORY_SIZE
Definition: apedec.c:49
#define MODEL_ELEMENTS
Definition: apedec.c:403
static void do_init_filter(APEFilter *f, int16_t *buf, int order)
Definition: apedec.c:1300
static int get_k(int ksum)
Definition: apedec.c:602
#define YDELAYB
Definition: apedec.c:55
#define APE_FRAMECODE_STEREO_SILENCE
Definition: apedec.c:46
static int range_decode_culfreq(APEContext *ctx, int tot_f)
Calculate cumulative frequency for next symbol.
Definition: apedec.c:362
static void update_rice(APERice *rice, unsigned int x)
Definition: apedec.c:471
APECompressionLevel
Possible compression levels.
Definition: apedec.c:68
@ COMPRESSION_LEVEL_EXTRA_HIGH
Definition: apedec.c:72
@ COMPRESSION_LEVEL_INSANE
Definition: apedec.c:73
@ COMPRESSION_LEVEL_FAST
Definition: apedec.c:69
@ COMPRESSION_LEVEL_HIGH
Definition: apedec.c:71
@ COMPRESSION_LEVEL_NORMAL
Definition: apedec.c:70
static int ape_decode_value_3990(APEContext *ctx, APERice *rice)
Definition: apedec.c:561
static av_always_inline int filter_3800(APEPredictor *p, const unsigned decoded, const int filter, const int delayA, const int delayB, const int start, const int shift)
Definition: apedec.c:894
static const int32_t initial_coeffs_b_3800[2]
Definition: apedec.c:799
static void ape_apply_filters(APEContext *ctx, int32_t *decoded0, int32_t *decoded1, int count)
Definition: apedec.c:1389
AVCodec ff_ape_decoder
Definition: apedec.c:1678
static void ape_unpack_mono(APEContext *ctx, int count)
Definition: apedec.c:1419
static void long_filter_high_3800(int32_t *buffer, int order, int shift, int length)
Definition: apedec.c:939
static void predictor_decode_mono_3930(APEContext *ctx, int count)
Definition: apedec.c:1144
static int init_entropy_decoder(APEContext *ctx)
Definition: apedec.c:753
#define PREDICTOR_SIZE
Total size of all predictor histories.
Definition: apedec.c:52
#define XADAPTCOEFFSB
Definition: apedec.c:62
static const int64_t initial_coeffs_3930_64bit[4]
Definition: apedec.c:807
#define EXTRA_BITS
Definition: apedec.c:329
static int range_decode_culshift(APEContext *ctx, int shift)
Decode value with given size in bits.
Definition: apedec.c:374
static const int32_t initial_coeffs_a_3800[3]
Definition: apedec.c:795
static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
Definition: apedec.c:1312
#define YDELAYA
Definition: apedec.c:54
static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode)
Definition: apedec.c:671
static void long_filter_ehigh_3830(int32_t *buffer, int length)
Definition: apedec.c:965
static av_cold int ape_decode_init(AVCodecContext *avctx)
Definition: apedec.c:233
static int ape_decode_value_3860(APEContext *ctx, GetBitContext *gb, APERice *rice)
Definition: apedec.c:494
static const int32_t initial_coeffs_3930[4]
Definition: apedec.c:803
static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode)
Definition: apedec.c:665
static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode)
Definition: apedec.c:707
static void predictor_decode_stereo_3800(APEContext *ctx, int count)
Definition: apedec.c:986
static int range_get_symbol(APEContext *ctx, const uint16_t counts[], const uint16_t counts_diff[])
Decode symbol.
Definition: apedec.c:447
#define YADAPTCOEFFSA
Definition: apedec.c:59
#define APE_FILTER_LEVELS
Definition: apedec.c:77
static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode)
Definition: apedec.c:734
static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode)
Definition: apedec.c:742
static void predictor_decode_stereo_3930(APEContext *ctx, int count)
Definition: apedec.c:1116
static av_always_inline int predictor_update_3930(APEPredictor *p, const int decoded, const int filter, const int delayA)
Definition: apedec.c:1086
static int get_rice_ook(GetBitContext *gb, int k)
Definition: apedec.c:482
static av_always_inline int predictor_update_filter(APEPredictor64 *p, const int decoded, const int filter, const int delayA, const int delayB, const int adaptA, const int adaptB, int compression_level)
Definition: apedec.c:1166
static const AVClass ape_decoder_class
Definition: apedec.c:1671
static void predictor_decode_mono_3800(APEContext *ctx, int count)
Definition: apedec.c:1041
static void decode_array_0000(APEContext *ctx, GetBitContext *gb, int32_t *out, APERice *rice, int blockstodecode)
Definition: apedec.c:607
static void ape_flush(AVCodecContext *avctx)
Definition: apedec.c:1657
#define MAX_CHANNELS
Definition: apedec.c:42
static const uint16_t counts_3970[22]
Fixed probabilities for symbols in Monkey Audio version 3.97.
Definition: apedec.c:408
#define OFFSET(x)
Definition: apedec.c:1663
static void ape_unpack_stereo(APEContext *ctx, int count)
Definition: apedec.c:1440
#define XDELAYB
Definition: apedec.c:57
static void range_start_decoding(APEContext *ctx)
Start the decoder.
Definition: apedec.c:333
static const uint16_t counts_diff_3970[21]
Probability ranges for symbols in Monkey Audio version 3.97.
Definition: apedec.c:417
static const uint16_t counts_diff_3980[21]
Probability ranges for symbols in Monkey Audio version 3.98.
Definition: apedec.c:435
static const uint16_t counts_3980[22]
Fixed probabilities for symbols in Monkey Audio version 3.98.
Definition: apedec.c:426
static void init_predictor_decoder(APEContext *ctx)
Definition: apedec.c:811
static void apply_filter(APEContext *ctx, APEFilter *f, int32_t *data0, int32_t *data1, int count, int order, int fracbits)
Definition: apedec.c:1380
static int range_decode_bits(APEContext *ctx, int n)
Decode n bits (n <= 16) without modelling.
Definition: apedec.c:395
static int init_frame_decoder(APEContext *ctx)
Definition: apedec.c:1403
static void predictor_decode_mono_3950(APEContext *ctx, int count)
Definition: apedec.c:1252
#define APE_FRAMECODE_PSEUDO_STEREO
Definition: apedec.c:47
#define A(x)
Definition: vp56_arith.h:28
#define av_always_inline
Definition: attributes.h:45
#define av_cold
Definition: attributes.h:88
return
uint8_t
int32_t
simple assert() macros that are a bit more flexible than ISO C assert().
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
Libavcodec external API header.
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data,...
Definition: avcodec.h:1657
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:1660
#define AV_RL16
Definition: intreadwrite.h:42
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:31
#define Y
Definition: boxblur.h:38
#define s(width, name)
Definition: cbs_vp9.c:257
#define f(width, name)
Definition: cbs_vp9.c:255
static av_always_inline void filter(int16_t *output, ptrdiff_t out_stride, const int16_t *low, ptrdiff_t low_stride, const int16_t *high, ptrdiff_t high_stride, int len, int clip)
Definition: cfhddsp.c:27
audio channel layout utility functions
#define FFMIN(a, b)
Definition: common.h:105
#define FFABSU(a)
Unsigned Absolute value.
Definition: common.h:89
#define av_clip_int16
Definition: common.h:137
#define FFMAX(a, b)
Definition: common.h:103
#define NULL
Definition: coverity.c:32
long long int64_t
Definition: coverity.c:34
Public header for CRC hash function implementation.
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1900
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:71
static AVFrame * frame
int
bitstream reader API header.
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:546
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:291
#define MIN_CACHE_BITS
Definition: get_bits.h:128
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
@ AV_OPT_TYPE_CONST
Definition: opt.h:234
@ AV_OPT_TYPE_INT
Definition: opt.h:225
#define AV_CH_LAYOUT_MONO
#define AV_CH_LAYOUT_STEREO
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: codec.h:77
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
#define AV_CODEC_CAP_SUBFRAMES
Codec can output multiple frames per AVPacket Normally demuxers return one frame at a time,...
Definition: codec.h:95
@ AV_CODEC_ID_APE
Definition: codec_id.h:456
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
Definition: utils.c:50
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:374
uint32_t AVCRC
Definition: crc.h:47
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:392
@ AV_CRC_32_IEEE_LE
Definition: crc.h:54
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define AVERROR(e)
Definition: error.h:43
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:215
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:210
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:235
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:502
@ AVMEDIA_TYPE_AUDIO
Definition: avutil.h:202
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
Definition: samplefmt.h:67
@ AV_SAMPLE_FMT_U8P
unsigned 8 bits, planar
Definition: samplefmt.h:66
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
Definition: samplefmt.h:68
@ AV_SAMPLE_FMT_NONE
Definition: samplefmt.h:59
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
for(j=16;j >0;--j)
int i
Definition: input.c:407
#define av_log2
Definition: intmath.h:83
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
static const int shift2[6]
Definition: dxa.c:51
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:49
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
#define emms_c()
Definition: internal.h:54
version
Definition: libkvazaar.c:326
av_cold void ff_llauddsp_init(LLAudDSPContext *c)
int stride
Definition: mace.c:144
#define FFALIGN(x, a)
Definition: macros.h:48
const char data[16]
Definition: mxf.c:142
AVOptions.
typedef void(RENAME(mix_any_func_type))
static char buffer[20]
Definition: seek.c:32
static int shift(int a, int b)
Definition: sonic.c:82
Decoder context.
Definition: apedec.c:152
void(* entropy_decode_stereo)(struct APEContext *ctx, int blockstodecode)
Definition: apedec.c:193
int32_t * decoded[MAX_CHANNELS]
decoded data for each channel
Definition: apedec.c:174
int16_t * filterbuf[APE_FILTER_LEVELS]
filter memory
Definition: apedec.c:177
int samples
samples left to decode in current frame
Definition: apedec.c:158
const uint8_t * ptr
current position in frame data
Definition: apedec.c:188
void(* predictor_decode_mono)(struct APEContext *ctx, int count)
Definition: apedec.c:194
int flags
global decoder flags
Definition: apedec.c:164
int data_size
frame data allocated size
Definition: apedec.c:187
APEPredictor64 predictor64
64bit predictor used for final reconstruction
Definition: apedec.c:170
void(* predictor_decode_stereo)(struct APEContext *ctx, int count)
Definition: apedec.c:195
int channels
Definition: apedec.c:157
APERice riceY
rice code parameters for the first channel
Definition: apedec.c:181
uint8_t * data_end
frame data end
Definition: apedec.c:186
int fileversion
codec version, very important in decoding process
Definition: apedec.c:161
APEFilter filters[APE_FILTER_LEVELS][2]
filters used for reconstruction
Definition: apedec.c:182
uint32_t CRC_state
accumulated CRC
Definition: apedec.c:167
APEPredictor predictor
predictor used for final reconstruction
Definition: apedec.c:169
uint32_t CRC
signalled frame CRC
Definition: apedec.c:166
APERangecoder rc
rangecoder used to decode actual values
Definition: apedec.c:179
APERice riceX
rice code parameters for the second channel
Definition: apedec.c:180
AVCodecContext * avctx
Definition: apedec.c:154
int compression_level
compression levels
Definition: apedec.c:162
int blocks_per_loop
maximum number of samples to decode for each call
Definition: apedec.c:175
GetBitContext gb
Definition: apedec.c:183
int bps
Definition: apedec.c:159
BswapDSPContext bdsp
Definition: apedec.c:155
int error
Definition: apedec.c:190
int decoded_size
Definition: apedec.c:173
void(* entropy_decode_mono)(struct APEContext *ctx, int blockstodecode)
Definition: apedec.c:192
uint8_t * data
current frame data
Definition: apedec.c:185
int32_t * decoded_buffer
Definition: apedec.c:172
LLAudDSPContext adsp
Definition: apedec.c:156
int fset
which filter set to use (calculated from compression level)
Definition: apedec.c:163
int frameflags
frame flags
Definition: apedec.c:168
Filters applied to the decoded data.
Definition: apedec.c:99
uint32_t avg
Definition: apedec.c:105
int16_t * historybuffer
filter memory
Definition: apedec.c:102
int16_t * delay
filtered values
Definition: apedec.c:103
int16_t * coeffs
actual coefficients used in filtering
Definition: apedec.c:100
int16_t * adaptcoeffs
adaptive filter coefficients used for correcting of actual filter coefficients
Definition: apedec.c:101
int64_t lastA[2]
Definition: apedec.c:139
int64_t filterB[2]
Definition: apedec.c:142
uint64_t coeffsB[2][5]
adaption coefficients
Definition: apedec.c:145
uint64_t coeffsA[2][4]
adaption coefficients
Definition: apedec.c:144
int64_t historybuffer[HISTORY_SIZE+PREDICTOR_SIZE]
Definition: apedec.c:146
unsigned int sample_pos
Definition: apedec.c:148
int64_t * buf
Definition: apedec.c:137
int64_t filterA[2]
Definition: apedec.c:141
Filter histories.
Definition: apedec.c:121
unsigned int sample_pos
Definition: apedec.c:133
int32_t filterA[2]
Definition: apedec.c:126
int32_t * buf
Definition: apedec.c:122
int32_t historybuffer[HISTORY_SIZE+PREDICTOR_SIZE]
Definition: apedec.c:131
int32_t filterB[2]
Definition: apedec.c:127
uint32_t coeffsA[2][4]
adaption coefficients
Definition: apedec.c:129
uint32_t coeffsB[2][5]
adaption coefficients
Definition: apedec.c:130
int32_t lastA[2]
Definition: apedec.c:124
uint32_t low
low end of interval
Definition: apedec.c:114
unsigned int buffer
buffer for input/output
Definition: apedec.c:117
uint32_t range
length of interval
Definition: apedec.c:115
uint32_t help
bytes_to_follow resp. intermediate value
Definition: apedec.c:116
uint32_t k
Definition: apedec.c:109
uint32_t ksum
Definition: apedec.c:110
Describe the class of an AVClass context structure.
Definition: log.h:67
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
main external API structure.
Definition: avcodec.h:536
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:1204
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
Definition: avcodec.h:1744
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:1751
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:637
int channels
number of audio channels
Definition: avcodec.h:1197
int extradata_size
Definition: avcodec.h:638
uint64_t channel_layout
Audio channel layout.
Definition: avcodec.h:1247
void * priv_data
Definition: avcodec.h:563
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:1649
AVCodec.
Definition: codec.h:197
const char * name
Name of the codec implementation.
Definition: codec.h:204
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:384
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:332
AVOption.
Definition: opt.h:248
This structure stores compressed data.
Definition: packet.h:346
int size
Definition: packet.h:370
uint8_t * data
Definition: packet.h:369
#define avpriv_request_sample(...)
#define av_freep(p)
#define av_malloc(s)
#define av_log(a,...)
FILE * out
Definition: movenc.c:54
AVFormatContext * ctx
Definition: movenc.c:48
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
Definition: unary.h:46
@ X
Definition: vf_addroi.c:26
if(ret< 0)
Definition: vf_mcdeint.c:282
static const uint8_t offset[127][2]
Definition: vf_spp.c:107
uint8_t base
Definition: vp3data.h:141