FFmpeg  4.4.6
on2avc.c
Go to the documentation of this file.
1 /*
2  * On2 Audio for Video Codec decoder
3  *
4  * Copyright (c) 2013 Konstantin Shishkov
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
24 #include "libavutil/ffmath.h"
25 #include "libavutil/float_dsp.h"
26 #include "libavutil/mem_internal.h"
27 
28 #include "avcodec.h"
29 #include "bytestream.h"
30 #include "fft.h"
31 #include "get_bits.h"
32 #include "internal.h"
33 
34 #include "on2avcdata.h"
35 
36 #define ON2AVC_SUBFRAME_SIZE 1024
37 
47 };
48 
49 typedef struct On2AVCContext {
54  void (*wtf)(struct On2AVCContext *ctx, float *out, float *in, int size);
55 
56  int is_av500;
57 
58  const On2AVCMode *modes;
62  const int *band_start;
63 
64  int grouping[8];
67 
68  int is_long;
69 
73 
75 
77  VLC cb_vlc[16];
78 
79  float scale_tab[128];
80 
83 
89 
91 {
92  int w, b, band_off = 0;
93 
94  c->ms_present = get_bits1(gb);
95  if (!c->ms_present)
96  return;
97  for (w = 0; w < c->num_windows; w++) {
98  if (!c->grouping[w]) {
99  memcpy(c->ms_info + band_off,
100  c->ms_info + band_off - c->num_bands,
101  c->num_bands * sizeof(*c->ms_info));
102  band_off += c->num_bands;
103  continue;
104  }
105  for (b = 0; b < c->num_bands; b++)
106  c->ms_info[band_off++] = get_bits1(gb);
107  }
108 }
109 
110 // do not see Table 17 in ISO/IEC 13818-7
112 {
113  int bits_per_sect = c->is_long ? 5 : 3;
114  int esc_val = (1 << bits_per_sect) - 1;
115  int num_bands = c->num_bands * c->num_windows;
116  int band = 0, i, band_type, run_len, run;
117 
118  while (band < num_bands) {
119  band_type = get_bits(gb, 4);
120  run_len = 1;
121  do {
122  run = get_bits(gb, bits_per_sect);
123  if (run > num_bands - band - run_len) {
124  av_log(c->avctx, AV_LOG_ERROR, "Invalid band type run\n");
125  return AVERROR_INVALIDDATA;
126  }
127  run_len += run;
128  } while (run == esc_val);
129  for (i = band; i < band + run_len; i++) {
130  c->band_type[i] = band_type;
131  c->band_run_end[i] = band + run_len;
132  }
133  band += run_len;
134  }
135 
136  return 0;
137 }
138 
139 // completely not like Table 18 in ISO/IEC 13818-7
140 // (no intensity stereo, different coding for the first coefficient)
142 {
143  int w, w2, b, scale, first = 1;
144  int band_off = 0;
145 
146  for (w = 0; w < c->num_windows; w++) {
147  if (!c->grouping[w]) {
148  memcpy(c->band_scales + band_off,
149  c->band_scales + band_off - c->num_bands,
150  c->num_bands * sizeof(*c->band_scales));
151  band_off += c->num_bands;
152  continue;
153  }
154  for (b = 0; b < c->num_bands; b++) {
155  if (!c->band_type[band_off]) {
156  int all_zero = 1;
157  for (w2 = w + 1; w2 < c->num_windows; w2++) {
158  if (c->grouping[w2])
159  break;
160  if (c->band_type[w2 * c->num_bands + b]) {
161  all_zero = 0;
162  break;
163  }
164  }
165  if (all_zero) {
166  c->band_scales[band_off++] = 0;
167  continue;
168  }
169  }
170  if (first) {
171  scale = get_bits(gb, 7);
172  first = 0;
173  } else {
174  scale += get_vlc2(gb, c->scale_diff.table, 9, 3);
175  }
176  if (scale < 0 || scale > 127) {
177  av_log(c->avctx, AV_LOG_ERROR, "Invalid scale value %d\n",
178  scale);
179  return AVERROR_INVALIDDATA;
180  }
181  c->band_scales[band_off++] = c->scale_tab[scale];
182  }
183  }
184 
185  return 0;
186 }
187 
188 static inline float on2avc_scale(int v, float scale)
189 {
190  return v * sqrtf(abs(v)) * scale;
191 }
192 
193 // spectral data is coded completely differently - there are no unsigned codebooks
194 static int on2avc_decode_quads(On2AVCContext *c, GetBitContext *gb, float *dst,
195  int dst_size, int type, float band_scale)
196 {
197  int i, j, val, val1;
198 
199  for (i = 0; i < dst_size; i += 4) {
200  val = get_vlc2(gb, c->cb_vlc[type].table, 9, 2);
201 
202  for (j = 0; j < 4; j++) {
203  val1 = sign_extend((val >> (12 - j * 4)) & 0xF, 4);
204  *dst++ = on2avc_scale(val1, band_scale);
205  }
206  }
207 
208  return 0;
209 }
210 
211 static inline int get_egolomb(GetBitContext *gb)
212 {
213  int v = 4;
214 
215  while (get_bits1(gb)) {
216  v++;
217  if (v > 30) {
218  av_log(NULL, AV_LOG_WARNING, "Too large golomb code in get_egolomb.\n");
219  v = 30;
220  break;
221  }
222  }
223 
224  return (1 << v) + get_bits_long(gb, v);
225 }
226 
227 static int on2avc_decode_pairs(On2AVCContext *c, GetBitContext *gb, float *dst,
228  int dst_size, int type, float band_scale)
229 {
230  int i, val, val1, val2, sign;
231 
232  for (i = 0; i < dst_size; i += 2) {
233  val = get_vlc2(gb, c->cb_vlc[type].table, 9, 2);
234 
235  val1 = sign_extend(val >> 8, 8);
236  val2 = sign_extend(val & 0xFF, 8);
237  if (type == ON2AVC_ESC_CB) {
238  if (val1 <= -16 || val1 >= 16) {
239  sign = 1 - (val1 < 0) * 2;
240  val1 = sign * get_egolomb(gb);
241  }
242  if (val2 <= -16 || val2 >= 16) {
243  sign = 1 - (val2 < 0) * 2;
244  val2 = sign * get_egolomb(gb);
245  }
246  }
247 
248  *dst++ = on2avc_scale(val1, band_scale);
249  *dst++ = on2avc_scale(val2, band_scale);
250  }
251 
252  return 0;
253 }
254 
256 {
257  int ret;
258  int w, b, band_idx;
259  float *coeff_ptr;
260 
261  if ((ret = on2avc_decode_band_types(c, gb)) < 0)
262  return ret;
263  if ((ret = on2avc_decode_band_scales(c, gb)) < 0)
264  return ret;
265 
266  coeff_ptr = c->coeffs[ch];
267  band_idx = 0;
268  memset(coeff_ptr, 0, ON2AVC_SUBFRAME_SIZE * sizeof(*coeff_ptr));
269  for (w = 0; w < c->num_windows; w++) {
270  for (b = 0; b < c->num_bands; b++) {
271  int band_size = c->band_start[b + 1] - c->band_start[b];
272  int band_type = c->band_type[band_idx + b];
273 
274  if (!band_type) {
275  coeff_ptr += band_size;
276  continue;
277  }
278  if (band_type < 9)
279  on2avc_decode_quads(c, gb, coeff_ptr, band_size, band_type,
280  c->band_scales[band_idx + b]);
281  else
282  on2avc_decode_pairs(c, gb, coeff_ptr, band_size, band_type,
283  c->band_scales[band_idx + b]);
284  coeff_ptr += band_size;
285  }
286  band_idx += c->num_bands;
287  }
288 
289  return 0;
290 }
291 
293 {
294  int w, b, i;
295  int band_off = 0;
296  float *ch0 = c->coeffs[0];
297  float *ch1 = c->coeffs[1];
298 
299  for (w = 0; w < c->num_windows; w++) {
300  for (b = 0; b < c->num_bands; b++) {
301  if (c->ms_info[band_off + b]) {
302  for (i = c->band_start[b]; i < c->band_start[b + 1]; i++) {
303  float l = *ch0, r = *ch1;
304  *ch0++ = l + r;
305  *ch1++ = l - r;
306  }
307  } else {
308  ch0 += c->band_start[b + 1] - c->band_start[b];
309  ch1 += c->band_start[b + 1] - c->band_start[b];
310  }
311  }
312  band_off += c->num_bands;
313  }
314  return 0;
315 }
316 
317 static void zero_head_and_tail(float *src, int len, int order0, int order1)
318 {
319  memset(src, 0, sizeof(*src) * order0);
320  memset(src + len - order1, 0, sizeof(*src) * order1);
321 }
322 
323 static void pretwiddle(float *src, float *dst, int dst_len, int tab_step,
324  int step, int order0, int order1, const double * const *tabs)
325 {
326  float *src2, *out;
327  const double *tab;
328  int i, j;
329 
330  out = dst;
331  tab = tabs[0];
332  for (i = 0; i < tab_step; i++) {
333  double sum = 0;
334  for (j = 0; j < order0; j++)
335  sum += src[j] * tab[j * tab_step + i];
336  out[i] += sum;
337  }
338 
339  out = dst + dst_len - tab_step;
340  tab = tabs[order0];
341  src2 = src + (dst_len - tab_step) / step + 1 + order0;
342  for (i = 0; i < tab_step; i++) {
343  double sum = 0;
344  for (j = 0; j < order1; j++)
345  sum += src2[j] * tab[j * tab_step + i];
346  out[i] += sum;
347  }
348 }
349 
350 static void twiddle(float *src1, float *src2, int src2_len,
351  const double *tab, int tab_len, int step,
352  int order0, int order1, const double * const *tabs)
353 {
354  int steps;
355  int mask;
356  int i, j;
357 
358  steps = (src2_len - tab_len) / step + 1;
359  pretwiddle(src1, src2, src2_len, tab_len, step, order0, order1, tabs);
360  mask = tab_len - 1;
361 
362  for (i = 0; i < steps; i++) {
363  float in0 = src1[order0 + i];
364  int pos = (src2_len - 1) & mask;
365 
366  if (pos < tab_len) {
367  const double *t = tab;
368  for (j = pos; j >= 0; j--)
369  src2[j] += in0 * *t++;
370  for (j = 0; j < tab_len - pos - 1; j++)
371  src2[src2_len - j - 1] += in0 * tab[pos + 1 + j];
372  } else {
373  for (j = 0; j < tab_len; j++)
374  src2[pos - j] += in0 * tab[j];
375  }
376  mask = pos + step;
377  }
378 }
379 
380 #define CMUL1_R(s, t, is, it) \
381  s[is + 0] * t[it + 0] - s[is + 1] * t[it + 1]
382 #define CMUL1_I(s, t, is, it) \
383  s[is + 0] * t[it + 1] + s[is + 1] * t[it + 0]
384 #define CMUL2_R(s, t, is, it) \
385  s[is + 0] * t[it + 0] + s[is + 1] * t[it + 1]
386 #define CMUL2_I(s, t, is, it) \
387  s[is + 0] * t[it + 1] - s[is + 1] * t[it + 0]
388 
389 #define CMUL0(dst, id, s0, s1, s2, s3, t0, t1, t2, t3, is, it) \
390  dst[id] = s0[is] * t0[it] + s1[is] * t1[it] \
391  + s2[is] * t2[it] + s3[is] * t3[it]; \
392  dst[id + 1] = s0[is] * t0[it + 1] + s1[is] * t1[it + 1] \
393  + s2[is] * t2[it + 1] + s3[is] * t3[it + 1];
394 
395 #define CMUL1(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it) \
396  *dst++ = CMUL1_R(s0, t0, is, it) \
397  + CMUL1_R(s1, t1, is, it) \
398  + CMUL1_R(s2, t2, is, it) \
399  + CMUL1_R(s3, t3, is, it); \
400  *dst++ = CMUL1_I(s0, t0, is, it) \
401  + CMUL1_I(s1, t1, is, it) \
402  + CMUL1_I(s2, t2, is, it) \
403  + CMUL1_I(s3, t3, is, it);
404 
405 #define CMUL2(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it) \
406  *dst++ = CMUL2_R(s0, t0, is, it) \
407  + CMUL2_R(s1, t1, is, it) \
408  + CMUL2_R(s2, t2, is, it) \
409  + CMUL2_R(s3, t3, is, it); \
410  *dst++ = CMUL2_I(s0, t0, is, it) \
411  + CMUL2_I(s1, t1, is, it) \
412  + CMUL2_I(s2, t2, is, it) \
413  + CMUL2_I(s3, t3, is, it);
414 
415 static void combine_fft(float *s0, float *s1, float *s2, float *s3, float *dst,
416  const float *t0, const float *t1,
417  const float *t2, const float *t3, int len, int step)
418 {
419  const float *h0, *h1, *h2, *h3;
420  float *d1, *d2;
421  int tmp, half;
422  int len2 = len >> 1, len4 = len >> 2;
423  int hoff;
424  int i, j, k;
425 
426  tmp = step;
427  for (half = len2; tmp > 1; half <<= 1, tmp >>= 1);
428 
429  h0 = t0 + half;
430  h1 = t1 + half;
431  h2 = t2 + half;
432  h3 = t3 + half;
433 
434  CMUL0(dst, 0, s0, s1, s2, s3, t0, t1, t2, t3, 0, 0);
435 
436  hoff = 2 * step * (len4 >> 1);
437 
438  j = 2;
439  k = 2 * step;
440  d1 = dst + 2;
441  d2 = dst + 2 + (len >> 1);
442  for (i = 0; i < (len4 - 1) >> 1; i++) {
443  CMUL1(d1, s0, s1, s2, s3, t0, t1, t2, t3, j, k);
444  CMUL1(d2, s0, s1, s2, s3, h0, h1, h2, h3, j, k);
445  j += 2;
446  k += 2 * step;
447  }
448  CMUL0(dst, len4, s0, s1, s2, s3, t0, t1, t2, t3, 1, hoff);
449  CMUL0(dst, len4 + len2, s0, s1, s2, s3, h0, h1, h2, h3, 1, hoff);
450 
451  j = len4;
452  k = hoff + 2 * step * len4;
453  d1 = dst + len4 + 2;
454  d2 = dst + len4 + 2 + len2;
455  for (i = 0; i < (len4 - 2) >> 1; i++) {
456  CMUL2(d1, s0, s1, s2, s3, t0, t1, t2, t3, j, k);
457  CMUL2(d2, s0, s1, s2, s3, h0, h1, h2, h3, j, k);
458  j -= 2;
459  k += 2 * step;
460  }
461  CMUL0(dst, len2 + 4, s0, s1, s2, s3, t0, t1, t2, t3, 0, k);
462 }
463 
464 static void wtf_end_512(On2AVCContext *c, float *out, float *src,
465  float *tmp0, float *tmp1)
466 {
467  memcpy(src, tmp0, 384 * sizeof(*tmp0));
468  memcpy(tmp0 + 384, src + 384, 128 * sizeof(*tmp0));
469 
470  zero_head_and_tail(src, 128, 16, 4);
471  zero_head_and_tail(src + 128, 128, 16, 4);
472  zero_head_and_tail(src + 256, 128, 13, 7);
473  zero_head_and_tail(src + 384, 128, 15, 5);
474 
475  c->fft128.fft_permute(&c->fft128, (FFTComplex*)src);
476  c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 128));
477  c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 256));
478  c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 384));
479  c->fft128.fft_calc(&c->fft128, (FFTComplex*)src);
480  c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 128));
481  c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 256));
482  c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 384));
483  combine_fft(src, src + 128, src + 256, src + 384, tmp1,
486  c->fft512.fft_permute(&c->fft512, (FFTComplex*)tmp1);
487  c->fft512.fft_calc(&c->fft512, (FFTComplex*)tmp1);
488 
489  pretwiddle(&tmp0[ 0], tmp1, 512, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
490  pretwiddle(&tmp0[128], tmp1, 512, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
491  pretwiddle(&tmp0[256], tmp1, 512, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
492  pretwiddle(&tmp0[384], tmp1, 512, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
493 
494  memcpy(src, tmp1, 512 * sizeof(float));
495 }
496 
497 static void wtf_end_1024(On2AVCContext *c, float *out, float *src,
498  float *tmp0, float *tmp1)
499 {
500  memcpy(src, tmp0, 768 * sizeof(*tmp0));
501  memcpy(tmp0 + 768, src + 768, 256 * sizeof(*tmp0));
502 
503  zero_head_and_tail(src, 256, 16, 4);
504  zero_head_and_tail(src + 256, 256, 16, 4);
505  zero_head_and_tail(src + 512, 256, 13, 7);
506  zero_head_and_tail(src + 768, 256, 15, 5);
507 
508  c->fft256.fft_permute(&c->fft256, (FFTComplex*)src);
509  c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 256));
510  c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 512));
511  c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 768));
512  c->fft256.fft_calc(&c->fft256, (FFTComplex*)src);
513  c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 256));
514  c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 512));
515  c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 768));
516  combine_fft(src, src + 256, src + 512, src + 768, tmp1,
519  c->fft1024.fft_permute(&c->fft1024, (FFTComplex*)tmp1);
520  c->fft1024.fft_calc(&c->fft1024, (FFTComplex*)tmp1);
521 
522  pretwiddle(&tmp0[ 0], tmp1, 1024, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
523  pretwiddle(&tmp0[256], tmp1, 1024, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
524  pretwiddle(&tmp0[512], tmp1, 1024, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
525  pretwiddle(&tmp0[768], tmp1, 1024, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
526 
527  memcpy(src, tmp1, 1024 * sizeof(float));
528 }
529 
530 static void wtf_40(On2AVCContext *c, float *out, float *src, int size)
531 {
532  float *tmp0 = c->temp, *tmp1 = c->temp + 1024;
533 
534  memset(tmp0, 0, sizeof(*tmp0) * 1024);
535  memset(tmp1, 0, sizeof(*tmp1) * 1024);
536 
537  if (size == 512) {
538  twiddle(src, &tmp0[ 0], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
539  twiddle(src + 8, &tmp0[ 0], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
540  twiddle(src + 16, &tmp0[ 16], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
541  twiddle(src + 24, &tmp0[ 16], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
542  twiddle(src + 32, &tmp0[ 32], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
543  twiddle(src + 40, &tmp0[ 32], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
544  twiddle(src + 48, &tmp0[ 48], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
545  twiddle(src + 56, &tmp0[ 48], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
546  twiddle(&tmp0[ 0], &tmp1[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
547  twiddle(&tmp0[16], &tmp1[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
548  twiddle(&tmp0[32], &tmp1[ 32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
549  twiddle(&tmp0[48], &tmp1[ 32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
550  twiddle(src + 64, &tmp1[ 64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
551  twiddle(src + 80, &tmp1[ 64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
552  twiddle(src + 96, &tmp1[ 96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
553  twiddle(src + 112, &tmp1[ 96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
554  twiddle(src + 128, &tmp1[128], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
555  twiddle(src + 144, &tmp1[128], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
556  twiddle(src + 160, &tmp1[160], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
557  twiddle(src + 176, &tmp1[160], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
558 
559  memset(tmp0, 0, 64 * sizeof(*tmp0));
560 
561  twiddle(&tmp1[ 0], &tmp0[ 0], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
562  twiddle(&tmp1[ 32], &tmp0[ 0], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
563  twiddle(&tmp1[ 64], &tmp0[ 0], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
564  twiddle(&tmp1[ 96], &tmp0[ 0], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
565  twiddle(&tmp1[128], &tmp0[128], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
566  twiddle(&tmp1[160], &tmp0[128], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
567  twiddle(src + 192, &tmp0[128], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
568  twiddle(src + 224, &tmp0[128], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
569  twiddle(src + 256, &tmp0[256], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
570  twiddle(src + 288, &tmp0[256], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
571  twiddle(src + 320, &tmp0[256], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
572  twiddle(src + 352, &tmp0[256], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
573 
574  wtf_end_512(c, out, src, tmp0, tmp1);
575  } else {
576  twiddle(src, &tmp0[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
577  twiddle(src + 16, &tmp0[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
578  twiddle(src + 32, &tmp0[ 32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
579  twiddle(src + 48, &tmp0[ 32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
580  twiddle(src + 64, &tmp0[ 64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
581  twiddle(src + 80, &tmp0[ 64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
582  twiddle(src + 96, &tmp0[ 96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
583  twiddle(src + 112, &tmp0[ 96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
584  twiddle(&tmp0[ 0], &tmp1[ 0], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
585  twiddle(&tmp0[32], &tmp1[ 0], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
586  twiddle(&tmp0[64], &tmp1[ 64], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
587  twiddle(&tmp0[96], &tmp1[ 64], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
588  twiddle(src + 128, &tmp1[128], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
589  twiddle(src + 160, &tmp1[128], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
590  twiddle(src + 192, &tmp1[192], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
591  twiddle(src + 224, &tmp1[192], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
592  twiddle(src + 256, &tmp1[256], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
593  twiddle(src + 288, &tmp1[256], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
594  twiddle(src + 320, &tmp1[320], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
595  twiddle(src + 352, &tmp1[320], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
596 
597  memset(tmp0, 0, 128 * sizeof(*tmp0));
598 
599  twiddle(&tmp1[ 0], &tmp0[ 0], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
600  twiddle(&tmp1[ 64], &tmp0[ 0], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
601  twiddle(&tmp1[128], &tmp0[ 0], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
602  twiddle(&tmp1[192], &tmp0[ 0], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
603  twiddle(&tmp1[256], &tmp0[256], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
604  twiddle(&tmp1[320], &tmp0[256], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
605  twiddle(src + 384, &tmp0[256], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
606  twiddle(src + 448, &tmp0[256], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
607  twiddle(src + 512, &tmp0[512], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
608  twiddle(src + 576, &tmp0[512], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
609  twiddle(src + 640, &tmp0[512], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
610  twiddle(src + 704, &tmp0[512], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
611 
612  wtf_end_1024(c, out, src, tmp0, tmp1);
613  }
614 }
615 
616 static void wtf_44(On2AVCContext *c, float *out, float *src, int size)
617 {
618  float *tmp0 = c->temp, *tmp1 = c->temp + 1024;
619 
620  memset(tmp0, 0, sizeof(*tmp0) * 1024);
621  memset(tmp1, 0, sizeof(*tmp1) * 1024);
622 
623  if (size == 512) {
624  twiddle(src, &tmp0[ 0], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
625  twiddle(src + 8, &tmp0[ 0], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
626  twiddle(src + 16, &tmp0[16], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
627  twiddle(src + 24, &tmp0[16], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
628  twiddle(src + 32, &tmp0[32], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
629  twiddle(src + 40, &tmp0[32], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
630  twiddle(src + 48, &tmp0[48], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
631  twiddle(src + 56, &tmp0[48], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
632  twiddle(&tmp0[ 0], &tmp1[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
633  twiddle(&tmp0[16], &tmp1[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
634  twiddle(&tmp0[32], &tmp1[32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
635  twiddle(&tmp0[48], &tmp1[32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
636  twiddle(src + 64, &tmp1[64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
637  twiddle(src + 80, &tmp1[64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
638  twiddle(src + 96, &tmp1[96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
639  twiddle(src + 112, &tmp1[96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
640 
641  memset(tmp0, 0, 64 * sizeof(*tmp0));
642 
643  twiddle(&tmp1[ 0], &tmp0[ 0], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
644  twiddle(&tmp1[32], &tmp0[ 0], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
645  twiddle(&tmp1[64], &tmp0[ 0], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
646  twiddle(&tmp1[96], &tmp0[ 0], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
647  twiddle(src + 128, &tmp0[128], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
648  twiddle(src + 160, &tmp0[128], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
649  twiddle(src + 192, &tmp0[128], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
650  twiddle(src + 224, &tmp0[128], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
651  twiddle(src + 256, &tmp0[256], 128, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
652  twiddle(src + 320, &tmp0[256], 128, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
653 
654  wtf_end_512(c, out, src, tmp0, tmp1);
655  } else {
656  twiddle(src, &tmp0[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
657  twiddle(src + 16, &tmp0[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
658  twiddle(src + 32, &tmp0[ 32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
659  twiddle(src + 48, &tmp0[ 32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
660  twiddle(src + 64, &tmp0[ 64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
661  twiddle(src + 80, &tmp0[ 64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
662  twiddle(src + 96, &tmp0[ 96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
663  twiddle(src + 112, &tmp0[ 96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
664  twiddle(&tmp0[ 0], &tmp1[ 0], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
665  twiddle(&tmp0[32], &tmp1[ 0], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
666  twiddle(&tmp0[64], &tmp1[ 64], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
667  twiddle(&tmp0[96], &tmp1[ 64], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
668  twiddle(src + 128, &tmp1[128], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
669  twiddle(src + 160, &tmp1[128], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
670  twiddle(src + 192, &tmp1[192], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
671  twiddle(src + 224, &tmp1[192], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
672 
673  memset(tmp0, 0, 128 * sizeof(*tmp0));
674 
675  twiddle(&tmp1[ 0], &tmp0[ 0], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
676  twiddle(&tmp1[ 64], &tmp0[ 0], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
677  twiddle(&tmp1[128], &tmp0[ 0], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
678  twiddle(&tmp1[192], &tmp0[ 0], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
679  twiddle(src + 256, &tmp0[256], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
680  twiddle(src + 320, &tmp0[256], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
681  twiddle(src + 384, &tmp0[256], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
682  twiddle(src + 448, &tmp0[256], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
683  twiddle(src + 512, &tmp0[512], 256, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
684  twiddle(src + 640, &tmp0[512], 256, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
685 
686  wtf_end_1024(c, out, src, tmp0, tmp1);
687  }
688 }
689 
691 {
692  int ch, i;
693 
694  for (ch = 0; ch < c->avctx->channels; ch++) {
695  float *out = (float*)dst->extended_data[ch] + offset;
696  float *in = c->coeffs[ch];
697  float *saved = c->delay[ch];
698  float *buf = c->mdct_buf;
699  float *wout = out + 448;
700 
701  switch (c->window_type) {
702  case WINDOW_TYPE_EXT7:
703  c->mdct.imdct_half(&c->mdct, buf, in);
704  break;
705  case WINDOW_TYPE_EXT4:
706  c->wtf(c, buf, in, 1024);
707  break;
708  case WINDOW_TYPE_EXT5:
709  c->wtf(c, buf, in, 512);
710  c->mdct.imdct_half(&c->mdct_half, buf + 512, in + 512);
711  for (i = 0; i < 256; i++) {
712  FFSWAP(float, buf[i + 512], buf[1023 - i]);
713  }
714  break;
715  case WINDOW_TYPE_EXT6:
716  c->mdct.imdct_half(&c->mdct_half, buf, in);
717  for (i = 0; i < 256; i++) {
718  FFSWAP(float, buf[i], buf[511 - i]);
719  }
720  c->wtf(c, buf + 512, in + 512, 512);
721  break;
722  }
723 
724  memcpy(out, saved, 448 * sizeof(float));
725  c->fdsp->vector_fmul_window(wout, saved + 448, buf, c->short_win, 64);
726  memcpy(wout + 128, buf + 64, 448 * sizeof(float));
727  memcpy(saved, buf + 512, 448 * sizeof(float));
728  memcpy(saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
729  }
730 
731  return 0;
732 }
733 
734 // not borrowed from aacdec.c - the codec has original design after all
736  AVFrame *dst, int offset)
737 {
738  int i;
739  float *out = (float*)dst->extended_data[channel] + offset;
740  float *in = c->coeffs[channel];
741  float *saved = c->delay[channel];
742  float *buf = c->mdct_buf;
743  float *temp = c->temp;
744 
745  switch (c->window_type) {
748  case WINDOW_TYPE_LONG:
749  c->mdct.imdct_half(&c->mdct, buf, in);
750  break;
751  case WINDOW_TYPE_8SHORT:
752  for (i = 0; i < ON2AVC_SUBFRAME_SIZE; i += ON2AVC_SUBFRAME_SIZE / 8)
753  c->mdct_small.imdct_half(&c->mdct_small, buf + i, in + i);
754  break;
755  }
756 
757  if ((c->prev_window_type == WINDOW_TYPE_LONG ||
758  c->prev_window_type == WINDOW_TYPE_LONG_STOP) &&
759  (c->window_type == WINDOW_TYPE_LONG ||
760  c->window_type == WINDOW_TYPE_LONG_START)) {
761  c->fdsp->vector_fmul_window(out, saved, buf, c->long_win, 512);
762  } else {
763  float *wout = out + 448;
764  memcpy(out, saved, 448 * sizeof(float));
765 
766  if (c->window_type == WINDOW_TYPE_8SHORT) {
767  c->fdsp->vector_fmul_window(wout + 0*128, saved + 448, buf + 0*128, c->short_win, 64);
768  c->fdsp->vector_fmul_window(wout + 1*128, buf + 0*128 + 64, buf + 1*128, c->short_win, 64);
769  c->fdsp->vector_fmul_window(wout + 2*128, buf + 1*128 + 64, buf + 2*128, c->short_win, 64);
770  c->fdsp->vector_fmul_window(wout + 3*128, buf + 2*128 + 64, buf + 3*128, c->short_win, 64);
771  c->fdsp->vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, c->short_win, 64);
772  memcpy(wout + 4*128, temp, 64 * sizeof(float));
773  } else {
774  c->fdsp->vector_fmul_window(wout, saved + 448, buf, c->short_win, 64);
775  memcpy(wout + 128, buf + 64, 448 * sizeof(float));
776  }
777  }
778 
779  // buffer update
780  switch (c->window_type) {
781  case WINDOW_TYPE_8SHORT:
782  memcpy(saved, temp + 64, 64 * sizeof(float));
783  c->fdsp->vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, c->short_win, 64);
784  c->fdsp->vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, c->short_win, 64);
785  c->fdsp->vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, c->short_win, 64);
786  memcpy(saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
787  break;
789  memcpy(saved, buf + 512, 448 * sizeof(float));
790  memcpy(saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
791  break;
793  case WINDOW_TYPE_LONG:
794  memcpy(saved, buf + 512, 512 * sizeof(float));
795  break;
796  }
797  return 0;
798 }
799 
801  int buf_size, AVFrame *dst, int offset)
802 {
803  GetBitContext gb;
804  int i, ret;
805 
806  if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0)
807  return ret;
808 
809  if (get_bits1(&gb)) {
810  av_log(c->avctx, AV_LOG_ERROR, "enh bit set\n");
811  return AVERROR_INVALIDDATA;
812  }
813  c->prev_window_type = c->window_type;
814  c->window_type = get_bits(&gb, 3);
815 
816  c->band_start = c->modes[c->window_type].band_start;
817  c->num_windows = c->modes[c->window_type].num_windows;
818  c->num_bands = c->modes[c->window_type].num_bands;
819  c->is_long = (c->window_type != WINDOW_TYPE_8SHORT);
820 
821  c->grouping[0] = 1;
822  for (i = 1; i < c->num_windows; i++)
823  c->grouping[i] = !get_bits1(&gb);
824 
825  on2avc_read_ms_info(c, &gb);
826  for (i = 0; i < c->avctx->channels; i++)
827  if ((ret = on2avc_read_channel_data(c, &gb, i)) < 0)
828  return AVERROR_INVALIDDATA;
829  if (c->avctx->channels == 2 && c->ms_present)
831  if (c->window_type < WINDOW_TYPE_EXT4) {
832  for (i = 0; i < c->avctx->channels; i++)
834  } else {
836  }
837 
838  return 0;
839 }
840 
842  int *got_frame_ptr, AVPacket *avpkt)
843 {
844  AVFrame *frame = data;
845  const uint8_t *buf = avpkt->data;
846  int buf_size = avpkt->size;
848  GetByteContext gb;
849  int num_frames = 0, frame_size, audio_off;
850  int ret;
851 
852  if (c->is_av500) {
853  /* get output buffer */
855  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
856  return ret;
857 
858  if ((ret = on2avc_decode_subframe(c, buf, buf_size, frame, 0)) < 0)
859  return ret;
860  } else {
861  bytestream2_init(&gb, buf, buf_size);
862  while (bytestream2_get_bytes_left(&gb) > 2) {
863  frame_size = bytestream2_get_le16(&gb);
865  av_log(avctx, AV_LOG_ERROR, "Invalid subframe size %d\n",
866  frame_size);
867  return AVERROR_INVALIDDATA;
868  }
869  num_frames++;
871  }
872  if (!num_frames) {
873  av_log(avctx, AV_LOG_ERROR, "No subframes present\n");
874  return AVERROR_INVALIDDATA;
875  }
876 
877  /* get output buffer */
878  frame->nb_samples = ON2AVC_SUBFRAME_SIZE * num_frames;
879  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
880  return ret;
881 
882  audio_off = 0;
883  bytestream2_init(&gb, buf, buf_size);
884  while (bytestream2_get_bytes_left(&gb) > 2) {
885  frame_size = bytestream2_get_le16(&gb);
886  if ((ret = on2avc_decode_subframe(c, gb.buffer, frame_size,
887  frame, audio_off)) < 0)
888  return ret;
889  audio_off += ON2AVC_SUBFRAME_SIZE;
891  }
892  }
893 
894  *got_frame_ptr = 1;
895 
896  return buf_size;
897 }
898 
900 {
901  int i;
902 
903  ff_free_vlc(&c->scale_diff);
904  for (i = 1; i < 16; i++)
905  ff_free_vlc(&c->cb_vlc[i]);
906 }
907 
909 {
911  const uint8_t *lens = ff_on2avc_cb_lens;
912  const uint16_t *syms = ff_on2avc_cb_syms;
913  int i, ret;
914 
915  if (avctx->channels > 2U) {
916  avpriv_request_sample(avctx, "Decoding more than 2 channels");
917  return AVERROR_PATCHWELCOME;
918  }
919 
920  c->avctx = avctx;
924 
925  c->is_av500 = (avctx->codec_tag == 0x500);
926 
927  if (avctx->channels == 2)
929  "Stereo mode support is not good, patch is welcome\n");
930 
931  // We add -0.01 before ceil() to avoid any values to fall at exactly the
932  // midpoint between different ceil values. The results are identical to
933  // using pow(10, i / 10.0) without such bias
934  for (i = 0; i < 20; i++)
935  c->scale_tab[i] = ceil(ff_exp10(i * 0.1) * 16 - 0.01) / 32;
936  for (; i < 128; i++)
937  c->scale_tab[i] = ceil(ff_exp10(i * 0.1) * 0.5 - 0.01);
938 
939  if (avctx->sample_rate < 32000 || avctx->channels == 1)
940  memcpy(c->long_win, ff_on2avc_window_long_24000,
941  1024 * sizeof(*c->long_win));
942  else
943  memcpy(c->long_win, ff_on2avc_window_long_32000,
944  1024 * sizeof(*c->long_win));
945  memcpy(c->short_win, ff_on2avc_window_short, 128 * sizeof(*c->short_win));
946 
947  c->modes = (avctx->sample_rate <= 40000) ? ff_on2avc_modes_40
949  c->wtf = (avctx->sample_rate <= 40000) ? wtf_40
950  : wtf_44;
951 
952  ff_mdct_init(&c->mdct, 11, 1, 1.0 / (32768.0 * 1024.0));
953  ff_mdct_init(&c->mdct_half, 10, 1, 1.0 / (32768.0 * 512.0));
954  ff_mdct_init(&c->mdct_small, 8, 1, 1.0 / (32768.0 * 128.0));
955  ff_fft_init(&c->fft128, 6, 0);
956  ff_fft_init(&c->fft256, 7, 0);
957  ff_fft_init(&c->fft512, 8, 1);
958  ff_fft_init(&c->fft1024, 9, 1);
960  if (!c->fdsp)
961  return AVERROR(ENOMEM);
962 
963  ret = ff_init_vlc_from_lengths(&c->scale_diff, 9, ON2AVC_SCALE_DIFFS,
965  ff_on2avc_scale_diff_syms, 1, 1, -60, 0, avctx);
966  if (ret < 0)
967  goto vlc_fail;
968  for (i = 1; i < 16; i++) {
969  int idx = i - 1;
970  ret = ff_init_vlc_from_lengths(&c->cb_vlc[i], 9, ff_on2avc_cb_elems[idx],
971  lens, 1,
972  syms, 2, 2, 0, 0, avctx);
973  if (ret < 0)
974  goto vlc_fail;
975  lens += ff_on2avc_cb_elems[idx];
976  syms += ff_on2avc_cb_elems[idx];
977  }
978 
979  return 0;
980 vlc_fail:
981  av_log(avctx, AV_LOG_ERROR, "Cannot init VLC\n");
982  return ret;
983 }
984 
986 {
988 
989  ff_mdct_end(&c->mdct);
990  ff_mdct_end(&c->mdct_half);
991  ff_mdct_end(&c->mdct_small);
992  ff_fft_end(&c->fft128);
993  ff_fft_end(&c->fft256);
994  ff_fft_end(&c->fft512);
995  ff_fft_end(&c->fft1024);
996 
997  av_freep(&c->fdsp);
998 
1000 
1001  return 0;
1002 }
1003 
1004 
1006  .name = "on2avc",
1007  .long_name = NULL_IF_CONFIG_SMALL("On2 Audio for Video Codec"),
1008  .type = AVMEDIA_TYPE_AUDIO,
1009  .id = AV_CODEC_ID_ON2AVC,
1010  .priv_data_size = sizeof(On2AVCContext),
1013  .close = on2avc_decode_close,
1014  .capabilities = AV_CODEC_CAP_DR1,
1015  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
1016  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1018 };
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:925
static double val(void *priv, double ch)
Definition: aeval.c:76
#define av_cold
Definition: attributes.h:88
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
uint8_t
Libavcodec external API header.
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:31
void ff_free_vlc(VLC *vlc)
Definition: bitstream.c:431
int ff_init_vlc_from_lengths(VLC *vlc_arg, int nb_bits, int nb_codes, const int8_t *lens, int lens_wrap, const void *symbols, int symbols_wrap, int symbols_size, int offset, int flags, void *logctx)
Build VLC decoding tables suitable for use with get_vlc2()
Definition: bitstream.c:381
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
Definition: bytestream.h:158
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
Definition: bytestream.h:137
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
Definition: bytestream.h:168
audio channel layout utility functions
#define FFSWAP(type, a, b)
Definition: common.h:108
#define NULL
Definition: coverity.c:32
#define abs(x)
Definition: cuda_runtime.h:35
static __device__ float ceil(float a)
Definition: cuda_runtime.h:176
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1900
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:71
static AVFrame * frame
channel
Use these values when setting the channel map with ebur128_set_channel().
Definition: ebur128.h:39
internal math functions header
static av_always_inline double ff_exp10(double x)
Compute 10^x for floating point values.
Definition: ffmath.h:42
#define ff_mdct_init
Definition: fft.h:161
#define ff_fft_end
Definition: fft.h:144
#define ff_fft_init
Definition: fft.h:143
#define ff_mdct_end
Definition: fft.h:162
bitstream reader API header.
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:546
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:797
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
#define AV_CH_LAYOUT_MONO
#define AV_CH_LAYOUT_STEREO
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
Definition: avcodec.h:333
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
@ AV_CODEC_ID_ON2AVC
Definition: codec_id.h:489
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define AVERROR(e)
Definition: error.h:43
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:117
@ AVMEDIA_TYPE_AUDIO
Definition: avutil.h:202
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
@ AV_SAMPLE_FMT_FLTP
float, planar
Definition: samplefmt.h:69
@ AV_SAMPLE_FMT_NONE
Definition: samplefmt.h:59
static const uint8_t run_len[7][16]
Definition: h264_cavlc.c:219
cl_device_type type
int i
Definition: input.c:407
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:49
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
Definition: float_dsp.c:135
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
uint8_t w
Definition: llviddspenc.c:39
static const uint16_t mask[17]
Definition: lzw.c:38
static const struct @94 tabs[]
static av_const int sign_extend(int val, unsigned bits)
Definition: mathops.h:130
static uint8_t half(int a, int b)
Definition: mobiclip.c:541
const char data[16]
Definition: mxf.c:142
int frame_size
Definition: mxfenc.c:2206
static int get_egolomb(GetBitContext *gb)
Definition: on2avc.c:211
static int on2avc_decode_quads(On2AVCContext *c, GetBitContext *gb, float *dst, int dst_size, int type, float band_scale)
Definition: on2avc.c:194
static int on2avc_reconstruct_channel_ext(On2AVCContext *c, AVFrame *dst, int offset)
Definition: on2avc.c:690
static int on2avc_read_channel_data(On2AVCContext *c, GetBitContext *gb, int ch)
Definition: on2avc.c:255
static void zero_head_and_tail(float *src, int len, int order0, int order1)
Definition: on2avc.c:317
static av_cold int on2avc_decode_close(AVCodecContext *avctx)
Definition: on2avc.c:985
static int on2avc_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Definition: on2avc.c:841
static av_cold int on2avc_decode_init(AVCodecContext *avctx)
Definition: on2avc.c:908
static int on2avc_reconstruct_channel(On2AVCContext *c, int channel, AVFrame *dst, int offset)
Definition: on2avc.c:735
static int on2avc_decode_band_scales(On2AVCContext *c, GetBitContext *gb)
Definition: on2avc.c:141
#define CMUL1(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it)
Definition: on2avc.c:395
WindowTypes
Definition: on2avc.c:38
@ WINDOW_TYPE_EXT6
Definition: on2avc.c:45
@ WINDOW_TYPE_LONG
Definition: on2avc.c:39
@ WINDOW_TYPE_LONG_STOP
Definition: on2avc.c:40
@ WINDOW_TYPE_EXT7
Definition: on2avc.c:46
@ WINDOW_TYPE_EXT5
Definition: on2avc.c:44
@ WINDOW_TYPE_8SHORT
Definition: on2avc.c:42
@ WINDOW_TYPE_EXT4
Definition: on2avc.c:43
@ WINDOW_TYPE_LONG_START
Definition: on2avc.c:41
static void wtf_end_1024(On2AVCContext *c, float *out, float *src, float *tmp0, float *tmp1)
Definition: on2avc.c:497
static void pretwiddle(float *src, float *dst, int dst_len, int tab_step, int step, int order0, int order1, const double *const *tabs)
Definition: on2avc.c:323
#define ON2AVC_SUBFRAME_SIZE
Definition: on2avc.c:36
static void on2avc_read_ms_info(On2AVCContext *c, GetBitContext *gb)
Definition: on2avc.c:90
static int on2avc_decode_pairs(On2AVCContext *c, GetBitContext *gb, float *dst, int dst_size, int type, float band_scale)
Definition: on2avc.c:227
static int on2avc_apply_ms(On2AVCContext *c)
Definition: on2avc.c:292
static int on2avc_decode_band_types(On2AVCContext *c, GetBitContext *gb)
Definition: on2avc.c:111
static void twiddle(float *src1, float *src2, int src2_len, const double *tab, int tab_len, int step, int order0, int order1, const double *const *tabs)
Definition: on2avc.c:350
static void combine_fft(float *s0, float *s1, float *s2, float *s3, float *dst, const float *t0, const float *t1, const float *t2, const float *t3, int len, int step)
Definition: on2avc.c:415
static float on2avc_scale(int v, float scale)
Definition: on2avc.c:188
static void wtf_40(On2AVCContext *c, float *out, float *src, int size)
Definition: on2avc.c:530
static void wtf_end_512(On2AVCContext *c, float *out, float *src, float *tmp0, float *tmp1)
Definition: on2avc.c:464
static int on2avc_decode_subframe(On2AVCContext *c, const uint8_t *buf, int buf_size, AVFrame *dst, int offset)
Definition: on2avc.c:800
#define CMUL0(dst, id, s0, s1, s2, s3, t0, t1, t2, t3, is, it)
Definition: on2avc.c:389
static void wtf_44(On2AVCContext *c, float *out, float *src, int size)
Definition: on2avc.c:616
static av_cold void on2avc_free_vlcs(On2AVCContext *c)
Definition: on2avc.c:899
AVCodec ff_on2avc_decoder
Definition: on2avc.c:1005
#define CMUL2(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it)
Definition: on2avc.c:405
const float ff_on2avc_window_short[128]
Definition: on2avcdata.c:2854
const double ff_on2avc_tab_84_3[]
Definition: on2avcdata.c:3011
const double *const ff_on2avc_tabs_4_10_1[4]
Definition: on2avcdata.c:3092
const double *const ff_on2avc_tabs_20_84_1[20]
Definition: on2avcdata.c:4277
const double *const ff_on2avc_tabs_19_40_1[19]
Definition: on2avcdata.c:3378
const double ff_on2avc_tab_10_1[]
Definition: on2avcdata.c:2889
const double ff_on2avc_tab_40_2[]
Definition: on2avcdata.c:2932
const uint8_t ff_on2avc_cb_lens[]
Definition: on2avcdata.c:146
const uint8_t ff_on2avc_scale_diff_syms[ON2AVC_SCALE_DIFFS]
Definition: on2avcdata.c:113
const double ff_on2avc_tab_40_1[]
Definition: on2avcdata.c:2919
const double *const ff_on2avc_tabs_4_10_2[4]
Definition: on2avcdata.c:3096
const uint8_t ff_on2avc_scale_diff_bits[ON2AVC_SCALE_DIFFS]
Definition: on2avcdata.c:125
const double ff_on2avc_tab_84_1[]
Definition: on2avcdata.c:2949
const double *const ff_on2avc_tabs_19_40_2[19]
Definition: on2avcdata.c:3386
const double *const ff_on2avc_tabs_20_84_2[20]
Definition: on2avcdata.c:4285
const double ff_on2avc_tab_20_1[]
Definition: on2avcdata.c:2902
const On2AVCMode ff_on2avc_modes_44[8]
Definition: on2avcdata.c:102
const double ff_on2avc_tab_84_2[]
Definition: on2avcdata.c:2980
const double ff_on2avc_tab_20_2[]
Definition: on2avcdata.c:2909
const uint16_t ff_on2avc_cb_syms[]
Definition: on2avcdata.c:858
const double *const ff_on2avc_tabs_20_84_4[20]
Definition: on2avcdata.c:4301
const float ff_on2avc_window_long_24000[1024]
Definition: on2avcdata.c:2595
const float ff_on2avc_ctab_2[2048]
Definition: on2avcdata.c:4440
const double *const ff_on2avc_tabs_9_20_2[9]
Definition: on2avcdata.c:3180
const double ff_on2avc_tab_10_2[]
Definition: on2avcdata.c:2894
const On2AVCMode ff_on2avc_modes_40[8]
Definition: on2avcdata.c:91
const float ff_on2avc_window_long_32000[1024]
Definition: on2avcdata.c:2336
const float ff_on2avc_ctab_1[2048]
Definition: on2avcdata.c:4309
const double *const ff_on2avc_tabs_20_84_3[20]
Definition: on2avcdata.c:4293
const float ff_on2avc_ctab_4[2048]
Definition: on2avcdata.c:4702
const double ff_on2avc_tab_84_4[]
Definition: on2avcdata.c:3042
const int ff_on2avc_cb_elems[]
Definition: on2avcdata.c:2328
const double *const ff_on2avc_tabs_9_20_1[9]
Definition: on2avcdata.c:3175
const float ff_on2avc_ctab_3[2048]
Definition: on2avcdata.c:4571
#define ON2AVC_SCALE_DIFFS
Definition: on2avcdata.h:40
#define ON2AVC_ESC_CB
Definition: on2avcdata.h:29
#define ON2AVC_MAX_BANDS
Definition: on2avcdata.h:28
#define s1
Definition: regdef.h:38
#define s3
Definition: regdef.h:40
#define t0
Definition: regdef.h:28
#define s2
Definition: regdef.h:39
#define t1
Definition: regdef.h:29
#define t3
Definition: regdef.h:31
#define s0
Definition: regdef.h:37
#define t2
Definition: regdef.h:30
typedef void(RENAME(mix_any_func_type))
unsigned int pos
Definition: spdifenc.c:412
main external API structure.
Definition: avcodec.h:536
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:1204
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
Definition: avcodec.h:561
int sample_rate
samples per second
Definition: avcodec.h:1196
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:616
int channels
number of audio channels
Definition: avcodec.h:1197
uint64_t channel_layout
Audio channel layout.
Definition: avcodec.h:1247
void * priv_data
Definition: avcodec.h:563
AVCodec.
Definition: codec.h:197
const char * name
Name of the codec implementation.
Definition: codec.h:204
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:384
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:365
This structure stores compressed data.
Definition: packet.h:346
int size
Definition: packet.h:370
uint8_t * data
Definition: packet.h:369
Definition: fft.h:83
const uint8_t * buffer
Definition: bytestream.h:34
int num_bands
Definition: on2avc.c:60
float scale_tab[128]
Definition: on2avc.c:79
const On2AVCMode * modes
Definition: on2avc.c:58
int is_long
Definition: on2avc.c:68
float short_win[ON2AVC_SUBFRAME_SIZE/8]
Definition: on2avc.c:87
FFTContext mdct_small
Definition: on2avc.c:52
int is_av500
Definition: on2avc.c:56
FFTContext fft1024
Definition: on2avc.c:53
VLC cb_vlc[16]
Definition: on2avc.c:77
FFTContext mdct_half
Definition: on2avc.c:52
float mdct_buf[ON2AVC_SUBFRAME_SIZE]
Definition: on2avc.c:85
int window_type
Definition: on2avc.c:59
FFTContext mdct
Definition: on2avc.c:52
int num_sections
Definition: on2avc.c:72
float band_scales[ON2AVC_MAX_BANDS]
Definition: on2avc.c:74
FFTContext fft256
Definition: on2avc.c:53
FFTContext fft512
Definition: on2avc.c:53
int prev_window_type
Definition: on2avc.c:59
float coeffs[2][ON2AVC_SUBFRAME_SIZE]
Definition: on2avc.c:81
void(* wtf)(struct On2AVCContext *ctx, float *out, float *in, int size)
Definition: on2avc.c:54
VLC scale_diff
Definition: on2avc.c:76
int num_windows
Definition: on2avc.c:60
AVFloatDSPContext * fdsp
Definition: on2avc.c:51
FFTContext fft128
Definition: on2avc.c:53
float delay[2][ON2AVC_SUBFRAME_SIZE]
Definition: on2avc.c:82
uint8_t band_type[ON2AVC_MAX_BANDS]
Definition: on2avc.c:70
int ms_info[ON2AVC_MAX_BANDS]
Definition: on2avc.c:66
int ms_present
Definition: on2avc.c:65
int grouping[8]
Definition: on2avc.c:64
uint8_t band_run_end[ON2AVC_MAX_BANDS]
Definition: on2avc.c:71
float long_win[ON2AVC_SUBFRAME_SIZE]
Definition: on2avc.c:86
float temp[ON2AVC_SUBFRAME_SIZE *2]
Definition: on2avc.c:84
int bits_per_section
Definition: on2avc.c:61
AVCodecContext * avctx
Definition: on2avc.c:50
const int * band_start
Definition: on2avc.c:62
Definition: vlc.h:26
uint8_t run
Definition: svq3.c:205
#define avpriv_request_sample(...)
#define av_freep(p)
#define av_log(a,...)
static uint8_t tmp[11]
Definition: aes_ctr.c:27
#define src1
Definition: h264pred.c:140
#define src
Definition: vp8dsp.c:255
FILE * out
Definition: movenc.c:54
AVFormatContext * ctx
Definition: movenc.c:48
int size
static const struct twinvq_data tab
const char * b
Definition: vf_curves.c:118
const char * r
Definition: vf_curves.c:116
else temp
Definition: vf_mcdeint.c:259
static const uint8_t offset[127][2]
Definition: vf_spp.c:107
int len
static double c[64]